
Bachelorarbeit

Spinor formulation of Lanczos potentials
in Riemannian Geometry

Nikita Popov

347863

Institut für Theoretische Physik
Technische Universität Berlin

22. Juni 2017

Erstgutachter: Prof. Dr. H.-H. von Borzeszkowski
Zweitgutachter: Dr. Thoralf Chrobok
Bearbeitungszeitraum: 8. März 2017 bis 23. Juni 2017



Erklärung zur eigenständigen Anfertigung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und eigenhändig sowie ohne
unerlaubte Hilfe und ausschließlich unter Verwendung der aufgeführten Quellen und Hilfs-
mittel angefertigt habe.

Berlin, den 22. Juni 2017

........................................

I



Abstract

The conformal curvature Cabcd of a spacetime admits a potential Labc, known as the Lanczos
potential. The topic of this thesis is the formulation of the Lanczos potential in the spinor
formalism, where the high symmetry of the Weyl spinor ΨABCD simplifies many calculations.
Various properties of the Lanczos spinor are discussed, the most important of which is the
Illge wave equation, which can be leveraged for a proof of existence. The formulation in the
Newman-Penrose and Geroch-Held-Penrose formalisms is also considered. Finally, spinorial
solutions of the Lanczos potential for some classes of algebraically special spacetimes are
discussed.

Zusammenfassung

Die konforme Krümming Cabcd einer Raumzeit besitzt ein Potential Labc, welches als Lanczos-
Potential bekannt ist. Thema dieser Arbeit ist die Formulierung des Lanczos-Potentials im
Spinor-Formalismus, wo die hohe Symmetrie des Weyl-Spinors ΨABCD viele Berechnungen
vereinfacht. Verschiedene Eigenschaften des Lanczos-Spinors werden diskutiert, von denen die
wichtigste die Illge-Wellengleichung ist, welche auch zum Beweis der Existenz des Potentials
verwendet werden kann. Die Formulierung in den Newman-Penrose und Geroch-Held-Penrose
Formalismen wird ebenfalls behandelt. Zuletzt werden spinorielle Lösungen für das Lanczos-
Potential von einigen Klassen von algebraisch speziellen Raumzeiten diskutiert.
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Chapter 1: Introduction

Under Einstein’s theory of general relativity, spacetime is represented through a pseudo-
Riemannian manifold (M, g) of Lorentzian signature. The curvature of such a spacetime, as
represented by the Riemann curvature tensorRabcd, may be decomposed into two components:
the Ricci curvature Rab := Rcacb and the trace-free Weyl conformal curvature Cabcd. While
the Ricci curvature is determined, through the Einstein field equations

Rab − 1
2Rgab = κTab, R := Raa, κ := 8πG

c4

by the energy-momentum tensor Tab, it is less clear precisely how the Weyl curvature is
generated. Based on the circumstance that vacuum spacetimes (Tab = 0) are Ricci-flat and
the conformal curvature is thus their only non-vanishing component, we may deduce that it
is determined by the symmetries, as well as boundary and continuity conditions imposed on
the spacetime.

In 1962 Lanczos [21] found that the Weyl tensor can be explicitly generated in a differential
way from a third order potential Labc with symmetries Labc = L[ab]c, L[abc] = 0, by

Cabcd = 2Lab[c;d] + 2Lcd[a;b]

− (gacL(bd) − gadL(bc) + gbdL(ac) − gbcL(ad))
+ 4

3Lkl
k;lga[cgd]b,

(1.1)

where Lab := 2Lak [b;k]. Equation (1.1) is known as the Weyl-Lanczos equation, while Labc is
the Lanczos potential or spintensor. It is notable that the existence of such a potential does
not depend on the role of Cabcd as the conformal curvature, but is a result of its algebraic
symmetries. In fact, a potential of this kind exists for any tensor Wabcd satisfying

Wabcd = −Wbacd = −Wabdc = Wcdab, Wa[bcd] = 0 and W c
acb = 0.

While the symmetries of the Weyl curvature are rather complicated in the tensor formalism,
the corresponding spinorial object ΨABCD is fully symmetric with ΨABCD = Ψ(ABCD), which
suggests that a spinor formulation of the Lanczos potential may be significantly simpler.
Indeed, the spinorial Weyl-Lanczos equation reduces to

ΨABCD = 2∇A′ (ALBCD)A′ ,

where LABCA′ = L(ABC)A′ is the Lanczos spinor. This spinorial formulation, as well as
related properties and solutions, are the topic of this thesis.

This work is structured as follows: First, the remainder of this chapter contains a brief
overview of the spinor formalism, summarizing relevant identities and notational conventions.
Chapter 2 begins with a more detailed description of the Lanczos potential in the tensor for-
malism, followed by a conversion into the spinor formalism and a discussion of various general
properties that may be derived with it. Additionally, the problem is also formulated in the
Newman-Penrose (NP) and Geroch-Held-Penrose (GHP) formalisms. Chapter 3 discusses
spinorial solutions of the Weyl-Lanczos equation for certain spacetime classes. Finally, chap-
ter 4 summarizes and briefly discusses physical significance.
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1.1 Spinor formalism
As we will be using the two-component spinor formalism extensively, this section provides a
brief summary of important identities and notational conventions. Spinors may be introduced
in a number of ways, here we are mostly considering them as an algebraic construction, and
will forgo a discussion of geometric interpretation and group-theoretic underpinnings. Unless
otherwise mentioned, we are following the conventions of Penrose and Rindler [25]. The
spacetime signature is (+,−,−,−).

A spin-space is a two-dimensional module SA over C∞ complex fields, together with an
antisymmetric 2-form εAB = −εBA acting as the metric. The metric defines a canonical
isomorphism with the dual space SA by

ξB = εABξ
A, ξA = εABξB,

where, due to the anti-symmetry of the ε-spinor, some care has to be taken regarding the index
ordering conventions. Additionally, complex conjugation defines a canonical anti-isomorphism
with the primed spaces SA′ and SA′ by

ξA = ξ
A′
, ξA = ξA′ .

The spinor indexes A,B, . . . and A′, B′, . . . are abstract indexes, in that they do not refer to
any particular basis. Spinor components in a specific basis will be written fat, such as ξA.
A tensor index a is identified with the spinor index pair AA′. Because these are abstract
indexes, the Infeld-van der Waerden symbols ga

AA′ do not appear.
Due to the low dimensionality of spin-spaces, anti-symmetrization over three or more

indexes vanishes. In particular εA[BεCD] = 0, from which follows the useful identity

2χ···[AB] = χ···C
CεAB,

which also implies that any trace-free index pair is symmetric.
The ε-spinor relates to the spacetime metric by gab = εABεA′B′ . The Levi-Civita tensor

is given by
eabcd = iεACεBDεA′D′εB′C′ − iεADεBCεA′C′εB′D′

and the Hodge dual is defined as ∗Fab = 1
2eab

cdFcd. Under these conventions ∗∗Fab = −Fab.
Moving on to differential properties, the Levi-Civita covariant derivative ∇a can be ex-

tended in a unique way to act on spinors, such that it is compatible with εAB, that is
∇AA′εBC = 0.

Based on its algebraic symmetries, the curvature tensor Rabcd may be decomposed into
spinorial quantities as follows:

Rabcd = [ΨABCD + Λ(εADεBC + εACεBD)]︸ ︷︷ ︸
=:XABCD

εA′B′εC′D′ + ΦABC′D′εA′B′εCD + c.c. (1.2)

Here Λ is real and relates to the scalar curvature by R = 24Λ, ΦABA′B′ = Φ(AB)(A′B′) is real
and corresponds to the trace-free Ricci curvature, and ΨABCD = Ψ(ABCD) is complex and
corresponds to the conformal curvature. To be more specific, the Weyl tensor is given by

Cabcd = ΨABCDεA′B′εC′D′ + ΨA′B′C′D′εABεCD,

where the two terms are the anti-self-dual component Ψ and the self-dual component Ψ of
the Weyl tensor, respectively.

By the Ricci identity, the Riemann tensor appears when commutators of ∇a are applied
to tensors. Similarly, the spinorial curvature components appear when applying certain
commutators of the covariant spinor derivative. Defining the operators

�AB := ∇X′(A∇B)
X′ , �A′B′ := ∇X(A′∇B′)X
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we have that �AB acts on a spinor φ by

�ABφ
C E′
D F ′ = XABQ

CφQ E′

D F ′ −XABD
QφC E′

Q F ′

+ ΦABQ′
E′φC Q′

D F ′ − ΦABF ′
Q′φC E′

D Q′

and the action of �A′B′ may be obtained through complex conjugation. Additionally taking
into account the definition of XABCD from equation (1.2), we have the two useful special
cases

�(ABκC) = −ΨABC
DκD and �ABκ

B = −3ΛκA.

The Bianchi identity ∇[aRbc]de = 0 in the spinor formalism may be split into two equations

∇B′AΨABCD = ∇A′ (BΦCD)A′B′ and ∇CA′ΦCDA′B′ + 3∇DB′Λ = 0,

where for our purposes mostly the first is of interest. Notably, in vacuum spacetimes (and
more generally, Einstein spacetimes) we have that ∇B′AΨABCD = 0.

Finally, the Weyl spinor (like any totally symmetric spinor) may be decomposed as

ΨABCD = κ1
(Aκ

2
Bκ

3
Cκ

4
D),

where the κiA are referred to as principal spinors (with corresponding principal null directions).
By the Petrov classification, we then say that Ψ is of a certain Petrov type, if no (type I),
two (type II), two pairs (type D), three (type III) or four (type N) principal null directions
coincide. In case of Ψ = 0 the spacetime is conformally flat (type O).
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Chapter 2: Properties

This chapter will first provide an overview of Lanczos potentials in the tensor formalism,
including some historical context. Next, the translation into the spinor formalism will be
covered, and properties of the Lanczos spinor will be discussed. These include the Illge wave
equation, which is also used to prove the existence and uniqueness of the potential. Finally,
the formulation in the NP and GHP formalisms is considered.

2.1 Lanczos potentials in the tensor formalism
The object nowadays referred to as the Lanczos potential originates from a 1962 work by
Lanczos [21], wherein the splitting of the Riemann tensor into its self-double-dual S and
anti-self-double-dual A components

Sabcd = Rabcd + R∗ ∗abcd, Aabcd = Rabcd − R∗ ∗abcd

is investigated. Lanczos observed that while the self-double-dual component1 is generated by
the Ricci tensor and the metric through

Sabcd = (Rac − 1
4Rgac)gbd + (Rbd − 1

4Rgbd)gac − (Rad − 1
4Rgad)gbc − (Rbc − 1

4Rgbc)gad,

no such relationship for the anti-self-double-dual component is known. Lanczos endeavored
to find a similar generating function for Aabcd. We will only sketch the derivation here, as the
variational angle from which the problem is approached is not very relevant for our further
considerations.

Lanczos considers a variational problem where R∗ ∗abcd and gab are a priori independent
variational variables. To obtain a first-order Lagrangian, Γcab is also included as a variational
variable. Of course, these quantities are not actually independent, so that a number of
constraints have to be enforced using Lagrange multipliers: these are the Bianchi identity
R∗ ∗abcd;d = 0, the use of the Levi-Civita connection Γcab =

{ c
ab

}
, as well as the particular

relationship between the Christoffel symbols and the Ricci tensor. This yields the Lagrangian

L′ = L( R∗ ∗abcd, gab) + Labc R
∗ ∗abcd

;d + P abc(Γcab −
{ c
ab

}
)

+ ρab(Rab + Γcbc,a − Γcab,c + ΓcadΓdbc − ΓcabΓddc).

Additionally, R∗ ∗abcd has to satisfy the usual algebraic symmetries, which are not included
in the Lagrangian, and will be imposed after the variation instead. Labc, P abc and ρab here
are the Lagrange multipliers for the constraints on R∗ ∗abcd, Γcab and gab, where Labc is anti-
symmetric in ab, while P abc and ρab are symmetric. R∗ ∗abcd has 20 independent components,
while its conjugate Labc has 24. To match up the degrees of freedom, Lanczos imposed the
(somewhat arbitrary) condition L[abc] = 0.

The base Langrangian was chosen as L = 1
8 R∗ ∗abcdRabcd, which Lanczos has previously

shown to vanish identically under variation of gab [20], thus avoiding the imposition of any
1Due to different sign conventions, the meaning of the self- and anti-self-double-dual parts is interchanged

compared to Lanczos work.
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particular field equations. Variation of L′ with respect to R∗ ∗abcd, an application of its
algebraic symmetries and a longer calculation yield an expression for Rabcd in terms of Labc,
Rab and gab only.

However, the terms containing Rab coincide with the trace terms that are excluded from
the Weyl tensor. As such, the resulting expression for the Weyl tensor depends on Labc (and
the spacetime metric) only:

Cabcd = 2Lab[c;d] + 2Lcd[a;b]

− (gacL(bd) − gadL(bc) + gbdL(ac) − gbcL(ad))
+ 4

3Lkl
k;lga[cgd]b,

(2.1)

with Lab := 2Lak [b;k]. This is precisely the Weyl-Lanczos equation already mentioned in the
introduction, with Labc referred to as the Lanczos potential and having symmetries Labc =
L[ab]c and L[abc] = 0.

To return to the original motivation, the Weyl tensor is related to the anti-self-double-
dual component of the Riemann tensor by Cabcd = Aabcd − 1

6R(gacgbd − gadgbc). What has
been achieved here, is a splitting of the Riemann tensor into two components, one that is
generated in an algebraic manner from the Ricci tensor Rab, and one that is generated in a
differential manner from the Lanczos potential Labc.

The Lanczos potential in this definition has 20 independent components, while the Weyl
tensor only has 10. The 10 additional degrees of freedom are typically split into two gauge
fields, the algebraic gauge χa and the differential gauge F ab:

χa = Labb (2.2)
F ab = Labc;c. (2.3)

The particular choices of χa = 0 and F ab = 0 are known as the Lanczos algebraic gauge and
Lanczos differential gauge respectively. Publications will commonly assume that Lanczos
potentials satisfy one or both of these, sometimes without specifying this explicitly. While
the Lanczos algebraic gauge can always be easily achieved through the transformation

L̂abc = Labc − 1
3χagbc + 1

3χbgac,

which yields L̂abb = 0 while leaving the Weyl-Lanczos equation invariant, there is no general
way of transforming a Lanczos potential to satisfy the Lanczos differential gauge.

In 1982 Bampi and Caviglia [7] pointed out that Lanczos’ derivation does not constitute
a proof of existence: Lanczos has shown that equation (2.1) is the Euler-Lagrange equation
of a certain functional, but this does not by itself guarantee consistency. Bampi and Cav-
iglia proceeded to provide a local existence proof using an entirely different method, namely
Cartan’s local criteria of integrability of ideals of exterior forms.

Additionally, they showed a number of important facts: First, the existence of the Lanczos
potential does not depend on the geometric meaning of the Weyl tensor. Instead, any tensor
Wabcd satisfying the algebraic symmetries of the Weyl tensor

Wabcd = −Wbacd = −Wabdc = Wcdab, Wa[bcd] = 0 and W c
acb = 0, (2.4)

admits a Lanczos potential. To clearly distinguish this case, Wabcd is commonly referred to
as a “Weyl tensor candidate” and Labc as a “Lanczos potential candidate”.

Second, the differential gauge F ab = F [ab] can indeed be fixed arbitrarily, without affecting
existence. This justifies the validity of imposing the Lanczos differential gauge Labc;c = 0,
though it should be noted that imposing this gauge condition may make it significantly harder
to find explicit solutions. And finally, they showed that a similar (analytic) potential for the
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full Riemann tensor (that is, if the last condition in (2.4) is relaxed) does not exist in the
general case.

The Weyl-Lanczos equation (2.1) may also be written in the alternative form [27]

Cabcd = Lab[c;d] + Lcd[a;b] − ∗L∗ab[c;d] −
∗L∗cd[a;b] − 2

3Lkl
k;lga[cgd]b. (2.5)

While this form is less convenient for actual calculations, it highlights the structure of the
construction, and makes certain symmetries more evident. For example, it is clearly visible
that Cabcd is anti-self-double-dual, and that Cabcd = −Cbacd = −Cabdc = Ccdab holds.

2.2 Lanczos potentials in the spinor formalism
We will now translate the tensorial objects and equations from the previous section into
their spinorial counterparts. A spinorial formulation of the Lanczos potential was first given
by Maher and Zund in 1968 [23]. Some authors attribute the first spinor formulation to
Taub instead, who (independently) provided a spinor formulation in 1975 [29]. We follow the
general approach of Maher and Zund here, though we will refrain from imposing the Lanczos
gauge conditions initially.

Lanczos spinor Due to the skew symmetry Labc = L[ab]c and reality of the Lanzcos po-
tential, we may decompose it into2

Labc = LAA′BB′CC′ = LABCC′εA′B′ + LA′B′C′CεAB,

where
LABCC′ := 1

2LAA′B
A′
CC′ satisfies LABCC′ = L(AB)CC′ .

The cyclic property L[abc] = 0 may be more conveniently written as ∗Labb = ∗Labcg
bc = 0,

which implies

0 = (−iLABCC′εA′B′ + iLA′B′C′CεAB)εBCεB′C′

= iLABCA′ε
BC − iLA′B′C′AεB

′C′ = iLAB
B
A′ − iLA′B′B

′
A.

Defining LAA′ := LAB
B
A′ this reduces to the constraint LAA′ = LAA′ . The Lanczos algebraic

gauge Labb = 0 corresponds to

0 = LAA′BB′
BB′ = LAB

BB′εA′B′ + LA′B′
B′BεAB = −LABBA′ − LA′B′B

′
A,

that is LAA′ = −LAA′ . Together with the circular property this is only satisfied by LAA′ =
LAB

B
A′ = 0, which implies that LABCC′ = LA(BC)C′ . With the existing symmetry on the

first index pair, this makes L fully symmetric with LABCC′ = L(ABC)C′ .
The increased symmetry simplifies many calculations and an arbitrary potential can al-

ways be easily converted into the Lanczos algebraic gauge. Thus the general convention in
the literature is to include this gauge condition in the definition of the Lanczos spinor. Unless
explicitly noted otherwise, we will follow this convention.

2To stay consistent with modern conventions, the definition of the Lanczos spinor differs from Maher and
Zund by a factor of two.
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Weyl-Lanczos equation For the conversion of the Weyl-Lanczos equation we will briefly
return to the more general form of the Lanczos spinor that does not include the Lanczos
algebraic gauge. Writing out equation (2.1) in spinor components yields

Cabcd = ΨABCDεA′B′εC′D′ + ΨA′B′C′D′εABεCD

= ∇DD′(LABCC′εA′B′ + LA′B′C′CεAB)−∇CC′(LABDD′εA′B′ + LA′B′D′DεAB)
+∇BB′(LCDAA′εC′D′ + LC′D′A′AεCD)−∇AA′(LCDBB′εC′D′ + LC′D′B′BεCD)
− 1

2εACεA′C′(LBB′DD′ + LDD′BB′) + 1
2εADεA′D′(LBB′CC′ + LCC′BB′)

− 1
2εBDεB′D′(LAA′CC′ + LCC′AA′) + 1

2εBCεB′C′(LAA′DD′ + LDD′AA′)
+ 2

3∇LL′L
KK′LL′

KK′(εACεDBεA′C′εD′B′ − εADεCBεA′D′εC′B′),

where it should be noted that LABCC′ refers to the Lanczos spinor, while LAA′BB′ refers to
the shorthand Lab. Transvecting with εA′B′εC′D′ results in

4ΨABCD = 2∇DC
′
LABCC′ + 2∇CD

′
LABDD′ + 2∇BA

′
LCDAA′ + 2∇AB

′
LCDBB′

− 1
2εACε

B′D′(LBB′DD′ + LDD′BB′)− 1
2εADε

B′C′(LBB′CC′ + LCC′BB′)
− 1

2εBDε
A′C′(LAA′CC′ + LCC′AA′)− 1

2εBCε
A′D′(LAA′DD′ + LDD′AA′)

− 4
3∇LL′L

KK′LL′
KK′(εACεDB + εADεCB).

(2.6)

Without using the algebraic gauge condition, simplifying this expression explicitly is rather
tedious. As such, a derivation using explicit algebraic manipulation has been relayed to
Appendix A.1. We can however arrive at the same result using a simple symmetry argument:
Using ΨABCD = Ψ(ABCD) we may symmetrize the right-hand side of the equation, in which
case all terms involving the anti-symmetric εAB spinor vanish, while the first four terms
become identical. As such, this expression reduces to

ΨABCD = 2∇(A
A′LBCD)A′ , (2.7)

the spinorial Weyl-Lanczos equation.

Gauge conditions Clearly the Weyl-Lanczos equation stays invariant under gauge trans-
formations of the type

L̂ABCA′ = LABCA′ + εACχBA′ + εBCχAA′ , (2.8)

where χAA′ is real (to preserve the circular property). Noting that

L̂AB
B
A′ = LAB

B
A′ + 3χAA′ ,

a choice of χAA′ = −1
3LAB

B
A′ will result in a Lanczos spinor in Lanczos algebraic gauge.

This reaffirms the earlier choice to include the algebraic gauge condition in the definition of
the Lanczos spinor, and we will return to this convention now.

The more interesting gauge freedom is given by the differential gauge F ab = Labc;c. Using
anti-symmetry and reality we may write

FAA
′BB′ = FABεA

′B′ + F
A′B′

εAB,

with FAB = F(AB), so that the gauge condition becomes

FABεA
′B′ + F

A′B′
εAB = ∇CC′(LABCC

′
εA
′B′ + L

A′B′C′C
εAB).

Transvecting with εA′B′ yields
FAB = ∇CC′LABCC

′
.
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We observe that

εABFCD = εAB∇EE
′
LCDEE′ = ∇BE

′
LCDAE′ −∇AE

′
LCDBE′ ,

and consequently
εA(BFCD) = ∇(B

E′LCD)AE′ −∇AE
′
LBCDE′ .

As such, the Weyl-Lanczos equation may be written as

ΨABCD = 2∇(A
E′LBCD)E′ = 1

2∇A
E′LBCDE′ + 3

2∇(B
E′LCD)AE′

= 2∇AE
′
LBCDE′ + 3

2εA(BFCD). (2.9)

This form will be simpler for some of the following calculations. It is also noteworthy that
for the Lanczos differential gauge FAB = 0, the Weyl-Lanczos equation reduces to

ΨABCD = 2∇AA
′
LBCDA′ .

2.3 Wave equation, existence and uniqueness
One of the most significant results that have been first derived using the spinor formalism is
the Illge wave equation [19], which in vacuum and Lanczos differential gauge may be written
�LABCC′ = 0, and thus also �Labc = 0. A more complicated wave equation derived using
the tensor formalism

�Labc = 2Ldefg[a|c|Cb]def − 2L[a
deCb]edc − 1

2L
de
cCdeab

was previously known, but based on Illge’s result it was then found that the right hand side of
this equation vanishes identically in four dimensions [13]. In this section, we will discuss the
wave equation, an existence and uniqueness proof based on it, as well as some conceptually
related superpotential constructions.

2.3.1 Wave equation

Differentiating the Weyl-Lanczos equation as written in equation (2.9) yields

∇AA′ΨABCD = 2∇AA′∇AE
′
LBCDE′ + 3

2∇
AA′εA(BFCD)

= 2∇A[A′∇AE
′]LBCDE′ + 2∇A(A′∇AE

′)LBCDE′ + 3
2∇(B

A′FCD)

= −εA′E′�LBCDE′ − 2(ΦA′E′E
BLECDE′ + ΦA′E′E

CLBEDE′

+ ΦA′E′E
DLBCEE′ + 3ΛεA′E′LBCDE′) + 3

2∇(B
A′FCD)

= −�LBCDA
′ − 6ΦA′E′E

(BLCD)EE′ − 6ΛLBCDA
′ + 3

2∇(B
A′FCD). (2.10)

Per the spinorial Bianchi-identities it holds that ∇AA′ΨABCD = ∇(B
E′ΦCD)E′A′ . Substitut-

ing this expression results in

�LBCDA′ +∇(B
E′ΦCD)E′A′ + 6ΦA′E′E(BLCD)

EE′ + 6ΛLBCDA′ − 3
2∇A′(BFCD) = 0,

which is the general Illge wave equation. If the spacetime is vacuum (ΦABA′B′ = 0, Λ = 0) and
the Lanczos spinor is in Lanczos differential gauge (FAB = 0) this reduces to the previously
mentioned form

�LABCC′ = 0.
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2.3.2 Existence and uniqueness

Existence and uniqueness (in a specific sense discussed in the following) of the Lanczos po-
tential was first shown by Bampi and Caviglia [7]. However, their proof is mathematically
rather involved and utilizes methods not commonly seen in general relativity: in broad terms,
the Weyl-Lanczos equation is lifted into a system of exterior differential equations in 124
dimensions and then the existence of an involutive integral manifold is shown using local
integrability criteria due to Cartan.

A simpler proof using the spinor formalism and the theory of hyperbolic systems was later
provided by Illge [19]. Because of the reliance on the spinor formalism, this proof is valid
only for spacetimes, while the proof of Bampi and Caviglia is signature-independent.

Theorem 1 (Existence and Uniqueness, Illge 1988)
Given spinor fields WABCD = W(ABCD) and FAB = F(AB), as well as L̊ABCC′ = L̊(ABC)C′
defined on a spacelike smooth hypersurface Σ only, there exists a neighborhood of Σ, in which
the system

WABCD = 2∇(A
E′LBCD)E′

FBC = ∇AA′LABCA′

has one and only one solution LABCC′ = L(ABC)C′ such that L|Σ = L̊.

Of course, for WABCD = ΨABCD this corresponds to a solution of the Weyl-Lanczos
equation. We will now outline Illge’s proof, as it is rather straightforward and gives us some
insight into the structure of the problem. First, we may rewrite this system in the form of
equation (2.9):

WABCD = 2∇AE
′
LBCDE′ + 3

2εA(BFCD). (2.11)

The proof will also make use of the wave equation (2.10), here reproduced for the general
case using W instead of Ψ:

0 = �LBCDA′ + 6ΦA′E′E(BLCD)
EE′ + 6ΛLBCDA′ +∇A′AWABCD − 3

2∇A′(BFCD). (2.12)

We now denote the future-directed unit normal field of Σ by na (with nan
a = 1) and the

normal derivative operator by ∇n := na∇a. The tangential derivative is then given by
∇̃a := ∇a − na∇n. Restricting equation (2.11) to Σ and expanding ∇a yields

nA
E′∇nLBCDE′|Σ = WABCD|Σ − 2∇̃AE

′
LBCDE′|Σ − 3

2εA(BFCD)|Σ.

Multiplying by nAF ′ and using that due to normalization nAE
′
nAF ′ = 1

2ε
E′
F ′ , we obtain an

expression for ∇nL|Σ depending only on the values of W , F and L on the hypersurface. This
means that given L̊, there is a unique ∇nL|Σ, such that equation (2.11) is satisfied on Σ.

As we now have both L|Σ = L̊ and ∇nL|Σ as initial data, the theory of hyperbolic systems
guarantees that the wave equation (2.12), which is a linear, diagonal, second-order hyperbolic
system, has a unique solution L in a neighborhood of Σ (see for example Theorem 10.1.2 in
[34]). From the structure of the wave equation it is also clear that the solution must have
symmetry LABCC′ = L(ABC)C′ . What remains to be shown is that this L is also a solution
of the Weyl-Lanczos equation (2.11) itself, or equivalently, that

ηABCD := 2∇AE
′
LBCDE′ −WABCD + 3

2εA(BFCD)

is everywhere vanishing. We already know that η|Σ = 0, as equation (2.11) is satisfied on Σ.
Additionally, L being a solution of equation (2.12) corresponds to ∇AA′ηABCD = 0. Together
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with η|Σ = 0 this implies that ∇nL|Σ = 0 as well (from ∇n = na(∇a − ∇̃a)). Differentiating
again we have:

0 = ∇A′E∇A
′
Aη

A
BCD = ∇A′[E∇A

′
A]η

A
BCD +∇A′(E∇A

′
A)η

A
BCD

= 1
2εEA�η

A
BCD − 3ΛηEBCD − 3XEA(B

F ηACD)F

= −1
2�ηEBCD + 3ΨAFE(Bη

AF
CD) − 3Λ[ηEBCD + η(BCD)E + εE(Bη

F
CD)F ].

This is another another linear, diagonal, second-order hyperbolic system, as such the solution
η = 0 satisfying η|Σ = ∇nη|Σ = 0 is indeed the only solution. As such, the obtained L also
solves equation (2.11), concluding the proof.

The last step in the proof gives us some insight into the role of the wave equation: If we
can satisfy the Weyl-Lanczos equation on a single hypersurface, then the wave equation is
sufficient to extend this into a complete solution. We will further discuss the wave equation
as a sufficient condition in section 2.3.4.

While the proven theorem only makes local statements (within a causal neighborhood to
be precise), the result can be extended to a global statement for a relatively large class of
spacetimes: Assuming existence of a global spin structure, if the spacetime is also globally
hyperbolic and the hypersurface Σ is a Cauchy surface, then we have a globally unique
solution (in the sense of Theorem 1).

Finally, it should be noted that the result proven by Illge is somewhat stronger than what
was presented here. The proof generalizes in a straightforward manner to potentials of higher
order, yielding the following theorem.

Theorem 2 (Generalized Existence and Uniqueness, Illge 1988)
Given a spacelike smooth hypersurface Σ and spinor fields

WAA1...AnB′1...B
′
m

= W(AA1...An)(B′1...B′m)

FA2...AnB′1...B
′
m

= F(A2...An)(B′1...B′m)

L̊A1...AnB′1...B
′
mA
′ = L̊(A1...An)(B′1...B′m)A′ on Σ only,

there exists a neighborhood of Σ, in which the system

WAA1...AnB′1...B
′
m

= 2∇(A
A′LA1...An)A′

FA2...AnB′1...B
′
m

= ∇AA′LAA2...AnB′1...B
′
mA
′

has one and only one solution LA1...AnB′1...B
′
mA
′ = L(A1...An)(B′1...B′m)A′ such that L|Σ = L̊.

It should be emphasized, however, that in the presence of both primed and unprimed
indexes, the resulting potential is no longer fully symmetric (in the above formulation, the
symmetry does not include A′). Requiring complete symmetry imposes an additional alge-
braic constraint on the differential system.

2.3.3 Superpotentials

Given these fairly general results on the existence of spinor potentials, it should come as
no surprise that it is possible to construct higher-order potentials for the Lanczos potential
itself. Two such constructions have been investigated by Andersson and Edgar [4].

The first potential that can be constructed is

LABCC′ = ∇C′DTABCD, (2.13)

with symmetry TABCD = T(ABC)D. This potential always exists due to the complex conjugate
of Theorem 2 (with n = 0 and m = 3). This potential does not appear to be particularly
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useful for finding Lanczos potentials, but it can be leveraged for a very simple existence proof,
given in [4]: Supposing that L may be written in the form of equation (2.13) (but without
making use of the known existence theorem) the Weyl-Lanczos equation becomes

WABCD = 2∇(A
E′LBCD)E′ = 2∇(A|

E′∇E′ET|BCD)E ,

which may again be written as a linear, diagonal, second-order hyperbolic system

0 = �TBCDA − 6ΨA(B
EGTCD)GE + 6Λ(εA(BTCD)E

E + TA(BCD) + TBCDA)
− 3

2εA(BFCD) +WABCD,

which exhibits the desired symmetries and must have a (local) solution. This proof is some-
what simpler than that of Illge, because the Weyl-Lanczos equation directly serves as the
hyperbolic system, rather than using two derivatives of it as auxiliaries. On the other hand,
this is only a proof of existence, it does not make any statement on uniqueness.

The second potential that may be constructed is

LABCA′ = ∇(A
B′HBC)A′B′ , (2.14)

with symmetry HABA′B′ = H(AB)(A′B′). Theorem 2 does not guarantee the existence of
such a potential, because H is assumed to be fully symmetric here (including the primed
indexes). In [4] it has been shown that such a potential always exists in Einstein spacetimes,
where ΦABA′B′ = 0. However, certain non-Einstein spacetimes are known to have Lanczos
potentials taking this form as well [2] [32]. As we will see in section 3.2, solutions of this form
tend to have interesting properties.

2.3.4 Wave equation as a sufficient condition

For vacuum spacetimes and under Lanczos differential gauge, the wave equation (2.12) reduces
to

0 = �LABCA′ +∇A′DWABCD, (2.15)
where WABCD = 2∇(A

A′LBCD)A′ . If WABCD = ΨABCD then by the vacuum Bianchi iden-
tities we have that ∇A′DWABCD = 0 and thus �LABCA′ = 0. As such, �LABCA′ = 0 is
a necessary condition for L to be the Lanczos potential of the Weyl spinor Ψ in particular,
rather than of some arbitrary “Weyl candidate” W . In [14] Edgar and Höglung now consider
the question, under which circumstances it is also sufficient.

If �LBCDA′ = 0 then we have from equation (2.15) that ∇A′AWABCD = 0. This type
of equation has previously been analyzed by Bell and Szekeres [8], where it was found that
for vacuum spacetimes of “sufficient generality” it is only solved by constant multiples of the
Weyl spinor. Since a constant factor may be easily absorbed into L, we may say that in this
case �LABCA′ = 0 is indeed a sufficient condition to obtain a Lanczos potential of the Weyl
spinor.

Vacuum spacetimes of “sufficient generality” here refer to algebraically general spacetimes
that do not satisfy a certain strict condition given in [8]. If the condition is satisfied or if
the spacetimes is algebraically special, then the solution of ∇A′AWABCD = 0 may also have
additional independent components. As the spacetimes we are usually interested in tend
to be algebraically special, the wave equation �LBCDA′ = 0 is not particularly useful as a
sufficient condition for practical purposes.

2.4 Behavior under conformal rescaling
As the potential of the conformal curvature, it is interesting to consider whether the Lanczos
potential is well-behaved under conformal rescalings. A conformal rescaling

ĝµν = Ω2gµν ,
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for a (nowhere vanishing) field Ω leaves the conformal curvature invariant, such that Ψ̂ABCD =
ΨABCD. The corresponding change of the ε-spinor is given by ε̂AB = ΩεAB. To avoid
ambiguity as to which ε-spinor is in use, all contractions will be made explicit in the following.

The covariant derivative transforms by [25, ch. 5.6]

∇̂AA′ξB = ∇AA′ξB + ΥA′CεA
BξC

∇̂AA′ξB = ∇AA′ξB −ΥA′BεA
CξC = ∇AA′ξB −ΥA′BξA,

where ΥAA′ = ∇AA′ ln Ω. The Weyl-Lanczos equation for the new metric is then given by:

Ψ̂ABCD = 2ε̂E′A′∇̂A′(AL̂BCD)E′

= 2ε̂E′A′ [∇A′(AL̂BCD)E′ − 3ΥA′(AL̂BCD)E′ −ΥE′(AL̂BCD)A′ ]

= 2Ω−1εE
′A′ [∇A′(AL̂BCD)E′ − 2ΥA′(AL̂BCD)E′ ].

Finally, we may observe that for a spinor field X of arbitrary valence

Ωk∇AA′(Ω−kX) = ∇AA′X + (−k)ΩkΩ−k−1(∇AA′Ω)X
= ∇AA′X − k(∇AA′ ln Ω)X
= ∇AA′X − kΥAA′X,

so that the rescaled Weyl-Lanczos equation may also be written

Ω−1Ψ̂ABCD = 2εE′A′∇A′(A[Ω−2L̂BCD)E′ ]. (2.16)

Unfortunately, the additional factor of Ω−1 before Ψ̂ prevents us from establishing a direct
relationship between a Lanczos potential for the original metric and one for the rescaled one.

We may however note that for a conformally flat spacetime ĝµν = Ω2ηµν , where ηµν is the
Minkowski metric, we have Ψ = Ψ̂ = 0, so that the additional factor does not matter. As
such, given a Lanczos spinor L for the Minkowski metric, we know that L̂ABCA′ = Ω2LABCA′

will be a Lanczos spinor for ĝµν .3

Generalized Lanczos potential In [22] a generalized notion of the Lanczos potential is
considered, where next to a symmetric spinor L̃ABCA′ , additionally a scalar field f may be
chosen, such that

f−1ΨABCD = 2∇(A
A′L̃BCD)A′ . (2.17)

Comparing with equation (2.16), we can see that a generalized Lanczos potential (L̃ABCA′ , f)
for a spacetime gµν yields a (non-generalized) Lanczos potential LABCA′ = f2L̃ABCA′ for the
spacetime f2gµν .

In [22] solutions for vacuum type D spacetimes are given where f is chosen to be Ψ1/3
2 or

Ψ2/3
2 . By the previous result, this corresponds to proper Lanczos potentials for the spacetimes

Ψ2/3
2 gµν and Ψ4/3

2 gµν , which are of course significantly different from gµν . For this reason,
the utility of considering such a generalized potential is questionable.

2.5 Newman-Penrose formulation
While the spinor formalism is very useful for investigating general properties of the Lanczos
potential, the solution of the Weyl-Lanczos equations for specific spacetimes may benefit from

3In section 3.1 we will find that LABCA′ = ∇A′(AχBC) for symmetric χBC is a Lanczos potential for
conformally flat spacetimes. It is easy to verify that this may be written LABCA′ = Ω2∂A′(A[Ω−2χBC)], which
is consistent with the result obtained here.
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considering a particular, geometrically chosen dyad and projecting the involved quantities
onto it. This general approach, and the accompanying notation, is known as the Newman-
Penrose (NP) formalism. In the following we will outline the NP formulation of the Lanczos
potential, which first appeared in [23]. The derivation here follows the notation of O’Donnell
[24], but does not restrict to the Lanczos differential gauge.

Given a normalized dyad {oA, ιA}, the Lanczos scalars Li are defined as follows (in some
references with an extra sign):

L0 = LABCC′o
AoBoCoC

′
, L4 = LABCC′o

AoBoCιC
′

L1 = LABCC′o
AoBιCoC

′
, L5 = LABCC′o

AoBιCιC
′

L2 = LABCC′o
AιBιCoC

′
, L6 = LABCC′o

AιBιCιC
′

L3 = LABCC′ι
AιBιCoC

′
, L7 = LABCC′ι

AιBιCιC
′
.

(2.18)

The Lanczos spinor may be reconstructed from these scalars by

LABCC′ = L0ιAιBιCιC′ − 3L1ι(AιBoC)ιC′ + 3L2ι(AoBoC)ιC′ − L3oAoBoCιC′

− L4ιAιBιCoC′ + 3L5ι(AιBoC)oC′ − 3L6ι(AoBoC)oC′ + L7oAoBoCoC′ .

Let the symbol εAA with ε0A = oA, ε1
A = ιA collectively denote the basis, and εAA the dual

basis (with εA
AεA

B = εA
B). Using these symbols we may now expand the Weyl-Lanczos

equation in this basis. As the εAA symbols do not commute with the covariant derivative,
this requires application of the Leibniz rule:

ΨABCD = 2εAAεB
BεC

CεD
D∇(A

E′(LSTUV′εB
SεC

TεD)
UεE′

V′)

= 2εAAεB
BεC

CεD
D[εE′V

′
ε(B

SεC
TεD

U∇A)
E′LSTUV′

+ 3LSTUV′εE′
V′ε(C

TεD
U∇AE

′
εB)

S

+ LSTUV′ε(B
SεC

TεD
U∇A)

E′εE′
V′ ]

= 2[∇(A
V′LBCD)V′ + 3LS(CD|V′|εB

B∇A)
V′εB

S + L(BCD|V′|εE′
E′∇A)

E′εE′
V′ ]

= 2[∇(A
V′LBCD)V′ − 3LS(CD|V′|γA

V′
B)

S − L(BCD|V′|γ
E′

A)E′
V′ ]

= 2[εV′X′∇(A|X′|LBCD)V′ − 3εV′X′LS(CD|V′|γA|X′|B)
S − εE′X′L(BCD|V′γX′|A)E′

V′ ].

In the final steps the spin coefficients γAA′B
C = −εBB∇AA′εB

C have been introduced. At
this point, it is straightforward (if somewhat tedious) to explicitly evaluate this result for the
relevant combinations of dyad index values 0 and 1. This yields the Weyl-Lanczos equations
in the Newman-Penrose formalism:

1
2Ψ0 = δL0 −DL4 − (α+ 3β − π)L0 + 3σL1 + (3ε− ε+ ρ)L4 − 3κL5

2Ψ1 = 3δL1 − 3DL5 − δL4 + ∆L0 − (3γ + γ + 3µ− µ)L0 − 3(α+ β − π − τ)L1

+ 6σL2 + (3α− β + 3π + τ)L4 + 3(ε− ε+ ρ− ρ)L5 − 6κL6

Ψ2 = δL2 −DL6 − δL5 + ∆L1 − νL0 − (2µ− µ+ γ + γ)L1 − (α− β − π − 2τ)L2

+ σL3 + λL4 + (α− β + 2π + τ)L5 − (ε+ ε− ρ+ 2ρ)L6 − κL7

2Ψ3 = δL3 −DL7 − 3δL6 + 3∆L2 − 6νL1 + 3(µ− µ+ γ − γ)L2

− (α− 3β − 3τ − π)L3 + 6λL5 − 3(α+ β − τ − π)L6 − (3ε+ ε− ρ+ 3ρ)L7
1
2Ψ4 = ∆L3 − δL7 − 3νL2 + (µ+ 3γ − γ)L3 + 3λL6 − (3α+ β − τ)L7.

(2.19)

2.5.1 GHP Formulation

The Geroch-Held-Penrose (GHP) formalism [16] is an extension of the NP formalism, which
uses the transformation behavior of weighted scalars to achieve a more compact notation. As
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the GHP formalism is less well known than the NP formalism, we will briefly summarize the
concepts and notations behind it.

Given a dyad {oA, ιA}, normalized such that oAιA = 1, the most general transformation
preserving both the normalization and the flagpole null directions is

oA 7→ λoA, ιA 7→ λ−1ιA, (2.20)

where λ is an arbitrary (nowhere vanishing) complex field. If under this dyad transformation
a scalar η transforms by

η → λpλ̄qη,

then it said to be a weighted scalar of type {p, q}. The weighted spin coefficients have the
following types:

κ : {3, 1}, σ : {3,−1}, ρ : {1, 1}, τ : {1,−1}
κ′ : {−3,−1}, σ′ : {−3, 1}, ρ′ : {−1,−1}, τ ′ : {−1, 1}.

(2.21)

The prime operation here effects the replacement

oA 7→ iιA, ιA 7→ ioA, oA
′ 7→ −iιA′ , ιA

′ 7→ −ioA′

and in particular we have that

κ′ = −ν, σ′ = −λ, ρ′ = −µ, τ ′ = −π.

The remaining spin coefficients α, β, ε and γ, as well as the standard NP differential operators
are not well-behaved under the transformation (2.20). However, it is possible to combine both
to define a new set of weighted differential operators, which act on a {p, q} weighted scalar η
by:4

þη = (D − pε− qε)η, þ′η = (∆− pγ − qγ)η
ðη = (δ − pβ − qα)η, ð′η = (δ − pα− qβ)η.

These operators have weights

þ : {1, 1}, þ′ : {−1,−1}, ð : {1,−1}, ð′ : {−1, 1},

which combine additively with the weight of the scalar they are applied to.
We can now read off the weights of the Lanczos scalars directly from their definition in

equation (2.18)

L0 : {3, 1}, L1 : {1, 1}, L2 : {−1, 1}, L3 : {−3, 1},
L4 : {3,−1}, L5 : {1,−1}, L6 : {−1,−1}, L7 : {−3,−1},

(2.22)

and also determine that the prime operation acts on them by

L′i = −L7−i, 0 ≤ i ≤ 7.

Furthermore we note that Ψ′i = Ψ4−i, 0 ≤ i ≤ 4. The NP Weyl-Lanczos equation (2.19)
can now be translated into the GHP formalism by substituting the new set of differential

4þ is pronounced “thorn” and ð is pronounced “eth”. These letters were used in Old and Middle English.
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operators and making use of the primed symbols:

1
2Ψ0 = ðL0 + þL′3 − τ ′L0 + 3σL1 − ρL′3 + 3κL′2
2Ψ1 = 3ðL1 + 3þL′2 + ð′L′3 + þ′L0 − (ρ′ − 3ρ′)L0 − 3(τ − τ)L1

+ 6σL2 + (3τ ′ − τ)L′3 + 3(ρ− ρ)L′2 + 6κL′1
Ψ2 = ðL2 + þL′1 + ð′L′2 + þ′L1 + κ′L0 − (ρ′ − 2ρ′)L1 − (τ ′ − 2τ)L2

+ σL3 + σ′L′3 + (2τ ′ − τ)L′2 + (2ρ− ρ)L′1 + κL′0

2Ψ′1 = ðL3 + þL′0 + 3ð′L′1 + 3þ′L2 + 6κ′L1 − 3(ρ′ − ρ′)L2 − (τ ′ − 3τ)L3

+ 6σ′L′2 + (3τ ′ − τ)L′1 + (3ρ− ρ)L′0
1
2Ψ′0 = þ′L3 + ð′L′0 + 3κ′L2 − ρ′L3 + 3σ′L′1 − τL′0.

(2.23)

The resulting GHP Weyl-Lanczos equations are somewhat simpler than the NP variants.
Additionally, we can see that the last two equations are actually just the primed versions of
the first two, so that we may, in principle, use the first three equations only and obtain the
remainder by priming.

However, it should be emphasized that in the general case primed and unprimed quantities
are entirely unrelated. In particular, it is not valid to take an expression for η and obtain η′
simply by priming its constituent parts. For this reason it is useful to retain all five GHP
Weyl-Lanczos equations, as it avoids confusion when switching from generic scalar symbols
to specific values for scalars.
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Chapter 3: Solutions

While the previous chapter discussed general properties of the Lanczos potential, this chapter
will investigate solutions of the Weyl-Lanczos equations for particular classes of spacetimes.

The term “solutions” here may refer to two different problems: Firstly, finding some
Lanczos spinor LABCC′ for a given spacetime with Weyl spinor ΨABCD. Secondly, assuming
some Lanczos spinor L is already known, characterizing the remaining differential gauge
freedom, by finding a symmetric MABCC′ , such that L̂ABCC′ = LABCC′ + MABCC′ is still a
Lanczos potential of Ψ.

This is equivalent to solving 0 = ∇(A
E′MBCD)E′ . While this formally resembles the Weyl-

Lanczos equation for conformally flat space (Ψ = 0), the problems differ significantly, as the
covariant derivative used here is not conformally flat in the general case.

As will be seen, both problems are somewhat orthogonal, in that in some cases we know
solutions for the former but not the latter and vice-versa. Only in the case of conformally flat
spacetimes both problems are solved “completely”, in the sense that all degrees of freedom
are accounted for.

3.1 Some algebraically special spacetimes
We will begin by considering the simple ansatz

LABCA′ = 1
4∇A′(AχBC), (3.1)

where χAB = χ(AB) is an, at this point, arbitrary symmetric spinor field. This is the spinorial
equivalent of the tensor ansatz

Labc = 2Mab;c +Mcb;a −Mca;b + gcaMb
k

;k − gcbMa
k

;k, (3.2)

with Mab antisymmetric, investigated by Chrobok [12]. Appendix A.2 establishes the re-
lationship between the spinor and tensor versions, as well as the resulting Weyl-Lanczos
equations. Inserting (3.1) into the Weyl-Lanczos equation we have

ΨABCD = 1
2∇(A

A′∇|A′|BχCD) = −1
2�(ABχCD) = Ψ(ABC

EχD)E . (3.3)

This provides a nice illustration for the simplifying power of the spinor formalism when
applied to Lanczos potentials: while the equivalent reduction of the Weyl-Lanczos equation
for the tensor ansatz requires a lengthy calculation, the result is immediate if the spinor
formalism is employed.

Clearly, equation (3.3) is identically satisfied for conformally flat spacetimes, in which
case χAB may be chosen arbitrarily. To obtain solutions for additional spacetime classes, we
will switch into the Newman-Penrose formalism. Given a dyad {oA, ιA} normalized such that
oAι

A = 1, we may project the involved quantities into scalars

ΨABCD = Ψ0ιAιBιCιD − 4Ψ1o(AιBιCιD) + 6Ψ2o(AoBιCιD)

− 4Ψ3o(AoBoCιD) + Ψ4oAoBoCoD

χAB = χ0ιAιB + 2χ1o(AιB) + χ2oAoB,
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where the Ψi are the Weyl scalars and χ0 = χABo
AoB, χ1 = χABo

AιB, χ2 = χABι
AιB.

Inserting into equation (3.3) and comparing coefficients yields the following system of equa-
tions:

Ψ0 = χ0Ψ1 + χ1Ψ0 + 0
−4Ψ1 = −3χ0Ψ2 − 2χ1Ψ1 + χ2Ψ0

6Ψ2 = 3χ0Ψ3 + 0− 3χ2Ψ1 (3.4)
−4Ψ3 = −χ0Ψ4 + 2χ1Ψ3 + 3χ2Ψ2

Ψ4 = 0− χ1Ψ4 − χ2Ψ3.

If the spacetime is Petrov type N and we choose oA to be a principal spinor, then only Ψ4 is
non-vanishing and the system reduces to

0 = −χ0Ψ4, Ψ4 = −χ1Ψ4.

This is solved by χ0 = 0, χ1 = −1 and χ2 arbitrary. We may write

LABCA′ = ∇A′(A
[
−1

2 ιBoC) + αoBoC)
]
, (3.5)

where α is an arbitrary complex field and ιA is an arbitrary spinor field satisfying oAιA = 1.
If the spacetime is Petrov type III and we choose oA as a repeated principal spinor and

ιA as a singular one, then only Ψ3 is non-vanishing and the system reduces to

0 = 3χ0Ψ3, −4Ψ3 = 2χ1Ψ3, 0 = −χ2Ψ3.

This is solved by χ0 = χ2 = 0, χ1 = −2 and we may write

LABCA′ = −∇A′(A(ιBoC)). (3.6)

Similar solutions for Petrov types D, II and I do not exist: these have canonical forms with
Ψ1 = Ψ3 = 0 and Ψ2 6= 0 [26, p. 240], which is clearly incompatible with the third equation
of system (3.4).

However, for Petrov type D spacetimes we can at least obtain a solution to the gauge
problem 0 = ∇(A

E′MBCD)E′ , using the same ansatz MABCA′ = 1
4∇A′(AχBC). In this case

the calculation is essentially the same, with the difference that the left-hand side of system
(3.4) becomes zero.

If the spacetime is Petrov type D and oA and ιA are chosen as independent principal
spinors, then only Ψ2 is non-vanishing. The system (with left-hand side zero) reduces to

0 = −3χ0Ψ2, 0 = 3χ2Ψ2,

which is satisfied by χ0 = χ2 = 0 and χ1 arbitrary. We may write

MABCA′ = ∇A′(A(αιBoC)), (3.7)

where α is an arbitrary complex field. To summarize, we have the following solutions:

Type 0: LABCA′ = ∇A′(AχBC)

for arbitrary symmetric χAB.

Type N: LABCA′ = ∇A′(A
[
−1

2 ιBoC) + αoBoC)
]

for oA principal, ιB arbitrary with oAιB = 1, α arbitrary.
Type III: LABCA′ = −∇A′(A(ιBoC))

for oA and ιB principal with oAιB = 1.
Type D: LABCA′ = L̂ABCA′ +∇A′(A(αιBoC))

for L̂ABCA′ Lanczos potential, oA and ιB principal with oAιB = 1, α arbitrary.
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At this point it is interesting to consider how many degrees of freedom we have in these
solution. For conformally flat space, χAB is arbitrary (apart from symmetry), so we have six
(real) degrees of freedom. This exacerbates the complete differential gauge freedom.

For Petrov type N, we have two degrees of freedom in the complex field α, and another
two in the choice of a normalized ιA, for a total of four degrees of freedom. For Petrov type
III, we have only a single solution, without any degrees of freedom. For Petrov type D we
don’t have a (general) solution, but given one, the field α would give us two additional gauge
degrees of freedom.

The solutions derived here have been given by various authors in a number of different
forms. The solution for conformally flat space was first given by Torres [32], using a different
derivation which will be discussed in section 3.3. The gauge solution for type D spacetimes
was also given by Torres [33]. The spinor forms of the type III and type N solutions (albeit
without the additional field α), have first appeared in [5]. Previously, they were derived in
[6] by means of the Newman-Penrose formalism, in which case the type III solution reads

L0 = κ, L1 = 1
3ρ, L2 = −1

3τ, L3 = −λ
L4 = σ, L5 = 1

3τ, L6 = −1
3µ, L7 = −ν,

(3.8)

and the type N solution differs by a factor 1
2 (again without the field α).

If one compares the GHP weights of the Lanczos scalars in (2.22) and the weights of the
spin coefficients in (2.21), one may observe that there is always one Lanczos scalar and one
spin coefficient with the same weight. The solution (3.8) assigns to each Lanczos scalar (up
to proportionality) the corresponding spin coefficient with the same weight. This natural
ansatz makes these solutions easy to obtain using the GHP formalism, where they were first
given in [11].

Conformally flat spacetimes The solution for conformally flat spacetimes is particularly
interesting, because the obtained solution has the full set of differential gauge degrees. As
such, it should always be possible to choose the field χAB, such that the potential is in a
certain differential gauge FAB. We may write this condition as

FAB = ∇CC′∇C′(AχBC) = 1
3(�χAB + 2∇C′C∇(A

C′χB)
C),

where

∇C′C∇AC
′
χB

C = ∇C′[C∇A]
C′χB

C +∇C′(C∇A)
C′χB

C

= 1
2�χBA − 3ΛχBA +XCABEχ

EC

and
XC(AB)Eχ

EC = ΨEABCχ
EC − ΛχAB.

Of course, in the conformally flat case we have Ψ = 0, so that the overall condition reduces
to

FAB = 2
3(�− 4Λ)χAB = 2

3(�− 1
6R)χAB.

For the Lanczos differential gauge FAB = 0 in particular we have (� − 1
6R)χAB = 0. This

wave equation looks similar to the conformally invariant scalar wave equation (�+ 1
6R)φ = 0,

but unfortunately differs in sign.
Grimminger [17] investigated solutions to the tensorial equivalent (� − 1

6R)Mab = 0 of
this equation. For gab = Ω2ηab it was found that Mab = Ω3Aab with Aab antisymmetric and
constant (Aab,c = 0) is a solution. However, the Lanczos potential generated from this choice
of Mab reduces to Labc = 0. As such, no non-trivial Lanczos potentials for conformally flat
space-times satisfying the Lanczos differential gauge are currently known.
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3.2 Kerr-Schild spacetimes

A Lanczos potential for Kerr spacetimes has been first given by Bergqvist [9]. With {oA, ιA}
referring to a normalized dyad of principal spinors (which exists, because the spacetime is
type D), the Lanczos potential may be written in the form (2.14) with

LABCA′ = ∇(A
B′HBC)A′B′ , HABA′B′ = foAoBoA′oB′ ,

where
f = ρ+ ρ

4ρ3 Ψ2 = ρ+ ρ

4 M (3.9)

depends on the mass parameter M and the spin coefficient ρ. This Lanczos potential has a
special property: If we consider

ΓABCA′ = ∇(A
B′HB)CA′B′ ,

such that LABCA′ = Γ(ABC)A′ , but Γ not necessarily symmetric in BC, then the connection
defined by

∇̂AA′ξB = ∇AA′ξB − 2ΓEBAA′ξE (3.10)

is flat, i.e., the curvature tensor for this connection vanishes identically. Due to symmetry of
Γ on the first two indices, we have that

∇̂AA′εBC = −2ΓEBAA′εEC − 2ΓECAA′εBE = −2ΓCBAA′ + 2ΓBCAA′ = 0,

such that the connection ∇̂ is metric, but not torsion-free.
Bergqvist starts with this flat connection construction, which was already previously

known [10], and shows that it also acts as a Lanczos potential using a relatively lengthy proof
in the GHP formalism. We will instead refer to a later proof by Andersson and Edgar [3],
which is both simpler and applies to a wider range of Kerr-Schild spacetimes.

Andersson and Edgar begin by considering the effect of the choice of the connection in
equation (3.10) on the curvature. As the connection is no longer torsion-free, we are now in
a Riemann-Cartan space, where the spinor decomposition of the curvature

R̂abcd = [Ψ̂ABCD + 2(εB(CΣ̂D)A + εA(CΣ̂D)B) + Λ̂(εADεBC + εACεBD)]εA′B′εC′D′

+ Φ̂ABC′D′εA′B′εCD + c.c.

has an additional component Σ̂AB, and Φ̂ABA′B′ is no longer necessarily real. The curvature
components of ∇̂ relate to those of the Levi-Civita connection by:

Ψ̂ABCD = ΨABCD − 2∇(A
E′ΓBCD)E′ − 4ΓE(AB

E′ΓECD)E′ ,

3Λ̂ = 3Λ−∇AE
′ΓABBE′ − ΓEABF ′ΓBEAF

′ + ΓBEBF ′ΓEAAF
′

4Σ̂AD = ∇BE′ΓB(AD)E′ −∇(A
E′ΓBD)BE′ − 2ΓE(D|B|

F ′ΓBEA)F ′ − 2ΓE(AD)
F ′ΓBEBF ′

Φ̂ABC′D′ = ΦABC′D′ + 2∇(B|E′ΓC′D′E
′
|A) + 4ΓE′D′F ′(A|ΓC′E

′F ′
|B).

We see that if Γ(ABC)A′ is a Lanczos potential of ΨABCD, then the first two terms of Ψ̂ABCD

cancel. The following lemma follows immediately:

Lemma 1 (Andersson and Edgar 1998) Given an asymmetric metric connection ∇̂AA′
of the form (3.10), any two of the following statements imply the third:

1. Ψ̂ABCD = 0, i.e., the Riemann-Cartan space is conformally flat.

2. ΓE(AB
E′ΓECD)E′ = 0.
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3. LABCA′ = Γ(ABC)A′ is a Lanczos potential of ΨABCD.

Returning to the original problem, a Kerr-Schild spacetime has the general form

gab = ηab + 2flalb,

where la = oAoA′ is a null vector field and f a real scalar field. For the case of the Kerr
spacetime in particular, f is given by equation (3.9) and la is aligned to a geodesic, shear-free
null congruence. The asymmetric metric connection defined by

ΓABCA′ = ∇(A
B′HB)CA′B′ , HABA′B′ = foAoBoA′oB′

has been shown to be flat for the Kerr spacetime in [10], and for the general class of Kerr-
Schild spacetimes in [18]. This satisfies the first condition of the above lemma, so it remains
to be shown that ΓE(AB

E′ΓECD)E′ = 0. We have that

ΓABCA′oA
′ = ∇(A

B′ [foB)oCoA′oB′o
A′ ]− fo(A|oCoA′oB′∇|B)

B′oA
′

= −fo(A|oCo
A′oB

′∇|B)B′oA′ .

If oA is aligned to a geodesic, shear-free null congruence, then oA
′
oB
′∇BB′oA′ = 0. Thus

we have ΓABCA′oA
′ = 0 and consequently there must be some MABC such that ΓABCA′ =

MABCoA′ . The desired property then follows directly. By the preceding lemma, we now have
that

LABCA′ = Γ(ABC)A′ = ∇(A
B′ [foBoC)oA′oB′ ]

is a Lanczos potential for any Kerr-Schild spacetime where la is aligned to a geodesic, shear-
free null congruence. This in particular also includes the Kerr spacetime.

3.3 Spacetimes with geodesic, shear-free null congruence
There are two generalizations of the Kerr-Schild result to a wider class of spacetimes, one by
Andersson [2] and another by Torres [32]. Interestingly, the solution by Torres predates both
the Kerr-Schild solution and the original Kerr solution due to Bergqvist [9].

In both cases, spacetimes that admit a geodesic, shear-free null congruence la = oAoA′ are
considered, under the additional restriction that the Ricci spinor is aligned to this congruence
by ΦABA′B′o

AoB = 0. In terms of NP quantities this means κ = σ = 0 and Φ00 = Φ01 =
Φ02 = 0. By the Goldberg-Sachs theorem it follows that Ψ0 = Ψ1 = 0, so the spacetime must
be algebraically special.

Andersson [2] additionally requires that the null congruence be expanding (ρ 6= 0) and
the scalar curvature be constant (Λ = const). Andersson uses the GHP formalism and the
method of ρ-integration [1] to approach this problem in multiple steps:

First, Lanczos potentials of the form LABCA′ = MABCoA′ are considered. Then, this is
restricted to LABCA′ = ∇(A

B′HBC)A′B′ , where HABA′B′ = QABoA′oB′ with QAB = Q(AB).
In both cases the Weyl-Lanczos equations are integrated, conditions for the functions of
integration are established and it is shown that these can always be satisfied.

Finally, it is considered under what circumstances it is possible to choose QAB, such that
the asymmetric metric connection defined by ΓABCA′ = ∇(A

B′HB)CA′B′ , as in the previous
section, has vanishing curvature components. From the preceding Lemma we already know
that Ψ̂ABCD = 0 must hold. Andersson additionally shows that Σ̂AB = 0. Lastly, it is
shown that a choice of QAB such that also Λ̂ = 0 and Φ̂ABA′B′ = 0 (making the connection
completely flat) exists if and only if Λ = 0.

While Torres [32] investigates a similar class of spacetimes (without the restrictions ρ 6= 0
and Λ = const) and the same form of potentials, his approach is based on methods from the

20



theory of null strings and H-spaces in complex general relativity. As this goes beyond what
can be briefly summarized here, we will only outline the general approach and cite the final
result. We note that in complex spacetimes, objects that were previously related by complex
conjugation split into independent objects, for example Ψ and Ψ become the independent
quantities Ψ and Ψ̃.

If the complex extension of the spacetime is considered, then it is known (for the given
class of spacetimes), that there exists a congruence of totally null 2-surfaces (all tangent
vectors of which are null), called a null string [30]. This null string induces a natural spinor
structure [15], which, given a specific choice of null tetrad, allows the metric and curvature
to be expressed in a certain form. Torres reformulates this in a covariant representation [31],
whereby the metric may be written

ds2 = ◦ds2 + φ−2ΩA′B′oCoDg
CA′gDB

′
,

where ds2 = 2φ−2dqA
′
dpA′ is conformally flat, with φ being a complex field and qA′ , pA′ being

complex coordinates. ΩA′B′ is symmetric and gAB′ refers to a certain cotangent null tetrad
(in terms of which ds2 = −1

2gAB′g
AB′). Given this representation, the Lanczos potential L̃

of Ψ̃ is given by
L̃A′B′C′R = 1

2∇(A′
S [φ−2ΩB′C′)oRoS ],

which is of the same form as considered by Andersson. As a special case of this result, Torres
also gives the Lanczos potential for conformally flat spacetimes, which was already discussed
in section 3.1.
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Chapter 4: Discussion

The topic of this thesis was the spinorial formulation of the theory of Lanczos potentials. We
have seen that many results can be more easily obtained and more compactly expressed in
the spinor formalism. The reason for this simplification is presumably that the Weyl spinor
possesses much simpler symmetry properties than the Weyl tensor.

We have discussed a number of properties of the Lanczos potential, the most important
of which is the Illge wave equation, which plays an integral part in proving existence and
uniqueness of the Lanczos potential. The formulation in the related NP and GHP formalism
was also considered. Finally, a number of spinorial solutions, which are applicable to a
relatively wide class of spacetimes, have been discussed.

Of course, the question that is ultimately most interesting, is to what degree the use of
Lanczos potentials (be it using spinors or tensors) is useful in solving gravitational problems
and whether these potentials hold any deeper physical significance.

In this context, the Lanczos potential is commonly seen in analogy with the electromag-
netic (EM) potential [28]: The EM tensor may be written Fab = ∇[aAb], where Ab is the
EM potential, and satisfies the field equation ∇aFab = Jb, where Jb is the source current.
Similarly, the Weyl tensor may be written Cabcd = f(∇eLfgh), and satisfies the field equation
∇aCabcd = Jbcd (Bianchi identity), where Jbcd is constructed from derivatives of the Ricci ten-
sor. The Lanczos differential gauge ∇cLabc = 0 may be seen as the analogon of the Lorentz
gauge ∇aAa = 0. In vacuum and Lorentz gauge, the EM wave equation reduces to �Aa = 0.
Similarly, in vacuum and Lanczos differential gauge the Illge wave equation is �Labc = 0.

Clearly, there are many similarities between the EM potential and the Lanczos potential.
But while the EM potential has proven to be decidedly useful for solving EM problems
and, through the Aharonov-Bohm effect, has acquired physical significance beyond a mere
mathematical tool, the same cannot be said of the Lanczos potential. Most publications in
this field deal with finding Lanczos potentials for specific spacetimes, while useful applications
are few and far between. To give two examples:

For the Kerr solution discussed in section 3.2, Bergqvist expresses a quasilocal momentum
in terms of the Lanczos potential [9]. As this construction depends on the flat asymmetric
metric connection from which the Lanczos potential is induced, and has been given in terms of
that connection previously [10], the role of the Lanczos potential itself is somewhat tenuous.

Roberts [28] investigates whether the Lanczos potential may exhibit something similar
to the Ahoronov-Bohm effect in a quantum gravitational setting. However, the result is
inconclusive. Of course, other attempts at interpretation exist, but nothing stands out as
particularly convincing.

A significant roadblock to the practical applicability of the Lanczos potential is probably
the circumstance that no general approach to finding a Lanczos potential for a given spacetime
is known (and the same holds true for enforcing the Lanczos differential gauge). Solutions for
many specific spacetimes and spacetime classes are known, but derivations use a wide range
of different methods, which are specific to the considered geometry and not unifiable in any
obvious manner.

While Lanczos’ original derivation based on variational calculus seems to imply a deep
physical significance of the Lanczos potential, Bampi and Caviglia first showed that the
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Lanczos potential is not connected to the role of the Weyl tensor as a curvature component,
but rather is a result of its algebraic symmetries. Illge later showed that the Lanczos potential
is only one of rather general class of spinor potentials.

Especially in light of this, it is my personal suspicion that the Lanczos potential is more
of a mathematical curiosity, than a fundamental object with a profound physical significance.
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Appendix A: Proofs

A.1 Alternative derivation of spinorial Weyl-Lanczos equa-
tion

The equivalence of the tensorial Weyl-Lanczos equation (2.1) and the spinorial equation
ΨABCD = 2∇E′ (ALBCD)E′ was shown in section 2.2 based on a simple symmetry argument.
Here a proof through explicit algebraic manipulation will be given instead. This approach
is much more tedious (at least if the Lanczos algebraic gauge is not imposed), but serves to
illustrate the somewhat non-trivial way in which the tensorial symmetries translate into the
spinorial ones.

We will start from the Weyl-Lanczos equation already transvected with εA
′B′εC

′D′ , as
given in equation (2.6):

4ΨABCD = 2∇DC
′
LABCC′ + 2∇CD

′
LABDD′ + 2∇BA

′
LCDAA′ + 2∇AB

′
LCDBB′

− 1
2εACε

B′D′(LBB′DD′ + LDD′BB′)− 1
2εADε

B′C′(LBB′CC′ + LCC′BB′)
− 1

2εBDε
A′C′(LAA′CC′ + LCC′AA′)− 1

2εBCε
A′D′(LAA′DD′ + LDD′AA′)

− 4
3∇LL′L

KK′LL′
KK′(εACεDB + εADεCB).

(A.1)

We remind that we have defined LAA′ := LAB
B
A′ and due to the cyclic property LAA′ = LAA′ .

Furthermore we use
Lab := La

k
b;k − Lakk;b.

In spinor form the latter corresponds to

LAA′BB′ = ∇EE′LAA′EE
′
BB′ −∇BB′LAA′EE

′
EE′

= ∇EE′(LAEBB′εA′E
′ + LA′

E′
B′BεA

E)−∇BB′(LAEEE′εA′E
′ + LA′

E′
E′EεA

E)
= ∇EE′(LAEBB′εA′E

′ + LA′
E′
B′BεA

E) + 2∇BB′LAA′ ,

where in the last line the cyclic property has been used. We observe that

LAA′B
A′ = ∇EE′(LAEBA

′
εA′

E′ + LA′
E′A′

BεA
E) + 2∇BA

′
LAA′

= ∇EE′(LAEBE
′ + LB

E′εA
E) + 2∇BA

′
LAA′

= ∇EE′LAEBE
′ +∇AE′LBE

′ − 2∇BE′LAE
′
,
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where again the cyclic property has been used. We now consider the following expression:

(LAA′BB′ + LBB′AA′)εA
′B′ = LAA′B

A′ − LBA′AA
′

= ∇EE′LAEBE
′ +∇AE′LBE

′ − 2∇BE′LAE
′

−∇EE′LBEAE
′ −∇BE′LAE

′ + 2∇AE′LBE
′

= ∇EE′LAEBE
′ −∇EE′LBEAE

′ + 3∇AE′LBE
′ − 3∇BE′LAE

′

= 2∇EE′L[A
E
B]
E′ + 6∇[A|E′|LB]

E′

= ∇EE′LDEDE
′
εAB + 3∇DE′LDE

′
εAB

= 4∇EE′LEE
′
εAB.

For the last term of the Weyl-Lanczos equation we have

∇LL′LKK
′LL′

KK′ = ∇LL′(LKLKK′εK
′L′ + L

K′L′

K′Kε
KL)

= 2∇LL′LLL
′
,

again exploiting the cyclic property. Inserting the obtained expressions into (A.1) we get

4ΨABCD = 2∇DC
′
LABCC′ + 2∇CD

′
LABDD′ + 2∇BA

′
LCDAA′ + 2∇AB

′
LCDBB′

− 2εAC∇EE′LEE
′
εBD − 2εAD∇EE′LEE

′
εBC

− 2εBD∇EE′LEE
′
εAC − 2εBC∇EE′LEE

′
εAD

− 2
3∇EE′L

EE′(εACεDB + εADεCB)
= 2∇DC

′
LABCC′ + 2∇CD

′
LABDD′ + 2∇BA

′
LCDAA′ + 2∇AB

′
LCDBB′

+ 4
3∇EE′L

EE′(εACεDB + εADεCB)

and consequently

ΨABCD = 1
2(∇DE

′
LABCE′ +∇CE

′
LABDE′ +∇BE

′
LCDAE′ +∇AE

′
LCDBE′)

+ 2
3∇EE′L

EE′εA(CεD)B.
(A.2)

Defining NABCD := ∇AE
′
LBCDE′ as a shorthand, the last term may be expanded in the

following manner:

∇EE′LEE
′
εA(CεD)B = −1

4N
E F

E F (εACεDB + εDBεAC + εADεCB + εCBεAD)
= −(N[AC][DB] +N[DB][AC] +N[AD][CB] +N[CB][AD])
= −1

4(NACDB −NACBD −NCADB +NCABD

+NDBAC −NDBCA −NBDAC +NBDCA

+NADCB −NADBC −NDACB +NDABC

+NCBAD −NCBDA −NBCAD +NBCDA)
= −1

4(2NACDB + 2NCABD + 2NDABC + 2NBCDA

−NABCD −NCADB −NDBCA −NBADC

−NABDC −NDACB −NCBDA −NBACD).

Inserting this back into (A.2), we find that these terms combine precisely so as to form a full
symmetrization operation:

ΨABCD = 1
6 · 12∇(A

E′LBCD)E′ = 2∇(A
E′LBCD)E′ .

Thus we arrive at the usual spinorial Weyl-Lanczos equation.
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A.2 Relation between spinor and tensor ansatz for some al-
gebraically special spacetimes

Section 3.1 discusses solutions obtained from the ansatz LABCA′ = 1
4∇A′(AχBC), which is

based on a tensor ansatz previously investigated by Chrobok [12]. We will now establish how
these are related and also compare the obtained expressions for the Weyl-Lanczos equation.

We start from the tensor ansatz

Labc = 2Mab;c +Mcb;a −Mca;b + gcaMb
k

;k − gcbMa
k

;k, (A.3)

where Mab is antisymmetric. It is readily verified that this satisfies the symmetry properties
and is in Lanczos algebraic gauge. Due to antisymmetry (and reality), the spinor form of
Mab decomposes as

MAA′BB′ = χABεA′B′ + χA′B′εAB,

where χAB = χ(AB). Writing equation (A.3) in spinor components gives

LABCC′εA′B′ + LA′B′C′CεAB = 2∇CC′(χABεA′B′ + χA′B′εAB)
+∇AA′(χCBεC′B′ + χC′B′εCB)
−∇BB′(χCAεC′A′ + χC′A′εCA)
+ εCAεC′A′∇KK′(χBKεB′K

′ + χB′
K′εB

K)
− εCBεC′B′∇KK′(χAKεA′K

′ + χA′
K′εA

K)

and transvection with εA′B′ yields

2LABCC′ = 4∇CC′χAB +∇AC′χCB +∇BC′χCA
+∇AA′χC′A

′
εCB +∇BB′χC′B

′
εCA

− εCA∇KC′χBK − εCA∇BK′χC′K
′ − εCB∇KC′χAK − εCB∇AK′χC′K

′
.

(A.4)

As the ansatz (A.3) is in Lanczos algebraic gauge, we must have LABCC′ = L(ABC)C′ . Ap-
plying the symmetrization to (A.4), all the terms containing εAB vanish and the first three
terms combine into

LABCC′ = 3∇C′(AχBC).

This matches the spinor ansatz up to a normalization factor of 1/12.
After a lengthy calculation, Chrobok reduces the Weyl-Lanczos equation for the ansatz

(A.3) to
Cabcd = 3(CkbdcMka − CkadcMkb + CkdbaMkc − CkcbaMkd). (A.5)

Writing the first term in spinor components and transvecting with εA′B′εC′D′ , we have

CkbdcMkaε
A′B′εC

′D′ = (ΨK
BDCε

K′
B′εD′C′ + ΨK′

B′D′C′ε
K
BεDC)

· (χKAεK′A′ + χK′A′εKA)εA′B′εC′D′

= −2ΨK
BDCε

K′
B′(χKAεK′A′ + χK′A′εKA)εA′B′

= −4ΨK
BDCχKA.

With analogous calculations for the remaining terms, the transvected equation (A.5) becomes

4ΨABCD = −3 · 4(ΨK
BCDχKA + ΨK

ADCχKB + ΨK
DBAχKC + ΨK

CBAχKD)
= −3 · 4 · 4Ψ(ABC

KχD)K .

Adjusting for the different normalization, this matches our result ΨABCD = Ψ(ABC
EχD)K

up to a sign.
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