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Abstract

PHP is a dynamically typed programming language, which is commonly used for the
server-side implementation of web applications. As such its performance is often critical
to the response time, throughput and resource utilization of such applications.

This thesis aims to reduce runtime overhead by applying classical data-flow optimiza-
tions to the PHP bytecode in static single assignment form. Type inference is used
both to enable the use of type-specialized instructions and to ensure the correctness of
other optimizations, which are commonly only applicable to certain types. Next to type-
specialization, we also implement flow-sensitive constant propagation, dead code elimina-
tion and copy propagation. Additionally, inlining is used to increase the applicability of
other optimizations.

The main challenge is to reconcile classical compiler optimizations, that have been
developed in the context of statically typed and compiled languages, with a programming
language that is not only dynamically and weakly typed, but also supports a plethora of
other dynamic language features. This requires a careful analysis of language semantics
and modification of standard algorithms to support them.

Our approach results in significant performance gains for numerically intensive and
tightly looped code, as is typically found in benchmark scripts. We achieve a mean
speedup of 1.42x on PHP’s own benchmark suit. However, when considering real appli-
cations we have found the speedup to be limited to 1-2%.



Zusammenfassung

PHP ist eine dynamisch typisierte Programmiersprache, welche haufig fir die Server-
seitige Implementierung von Web-Applikationen genutzt wird. Aus diesem Grund ist die
Effizienz der PHP-Implementierung kritisch fiir die Ausfithrungszeit, den Durchsatz und
den Ressourcen-Verbrauch derartiger Applikationen.

Ziel dieser Bachelorarbeit ist es die Performanz der PHP-Implementierung zu ver-
bessern, indem klassische Datenfluss-Optimierungsmethoden auf den PHP Bytecode in
Single-Static-Assignment Form angewendet werden. Typ-Inferenz wird genutzt, sowohl
um die Nutzung von Typ-spezialisierten Instruktionen zu erméglichen, als auch um die
Korrektheit anderer Optimierungen sicherzustellen, welche oftmals nicht auf alle Typen
anwendbar sind. Neben Typ-Spezialisierung wurde auch Kontrollfluss-sensitive Propaga-
tion von Konstanten, Elimination von totem Code, sowie Propagation von Kopien umge-
setzt. Zusétzlich wird durch Inline-Ersetzung von Funktionen die Anwendbarkeit anderer
Optimierungen erhoht.

Hierbei ist die hauptséchliche Herausforderung, dass klassische Compiler-Optimierungs-
methoden im Kontext von statisch typisierten und kompilierten Sprachen entwickeln wur-
den, wahrend PHP nicht nur dynamisch und schwach typisiert ist, sondern auch eine
Vielzahl anderer dynamischer Sprachelemente unterstiitzt. Dies erfordert eine sorgfalti-
ge Analyse der Sprachsemantik und Anpassung von Standard-Algorithmen, um diese zu
unterstutzen.

Unsere Herangehensweise fithrt zu signifikanten Verbesserungen in der Ausfithrungszeit
von numerisch intensivem Code, wie er typischerweise in Benchmarks gefunden wird.
In PHP’s eigener Benchmark-Suite verringert sich die Ausfithrungszeit im Durchschnitt

um einen Faktor von 1,42. Fiir realistische Applikationen begrenzt sich die Verbesserung
jedoch auf 1-2%.

vi



Contents

List of Figures
List of Listings

1.

Introduction

1.1. Historical context
1.2. Prior work

1.3. Attribution
1.4. Outline

. PHP Language Semantics

2.1. Dynamic and weak typing . . . . . . .. ... L
2.2. References . . . . . . . . .
2.3. The use-def nature of assignments . . . . . . . . ... ... L.
2.4. Dynamic scope introspection and modification . . . . . . ... ... ...
2.5. Error handling . . . . . . . ..o
2.6. Global variables and the pseudo-main scope . . . . . . .. ... ... ...
2.7. $this binding in methods . . . . . . ... ...
2.8. Type annotations . . . . . . . . . ..
. Prerequisites
3.1. Compilation and execution pipeline . . . . . . . .. .. ... ... .....
3.2. Instruction format . . . . . . . ... ...
3.3. Control flow graph . . . . . . . ..
3.4. Dominance, dominator trees and dominance frontiers . . . . . ... .. ..
3.5. Live-variable analysis . . . . . . . . . ... oo
3.6. Static single assignment form . . . . . ...
3.6.1. Motivation . . . . . . . . ...
3.6.2. SSA properties: Minimal, pruned, strict . . .. ... ... .. ...
3.6.3. Construction of SSA form . . . . . ... .. ... ... .. ... ..
3.6.4. Specifics of SSA formin PHP . . . . ... ... ... ... ... ..
3.6.5. Extended SSA form: Pinodes . . . . . ... ... ... .. .....
3.6.6. Phi placement after pi placement . . . . . ... ... ... ... ..
Analysis and Optimization
4.1. Sparse conditional propagation of data-flow properties. . . . . . . . . . ..
4.1.1. Requirements . . . . . . . . . . . . ...

ix

vii



Contents

4.1.2. Algorithm . . . . . . . ... 32

4.1.3. Properties . . . . . . . . 34

4.2. Typeinference. . . . . . . . . . . 35
4.2.1. Typelattice . . . . . . . .. 36

4.2.2. Join operator and transfer function . . . . .. .. .. ... 37

4.2.3. Flow-sensitivity: Feasible successors . . . . . . .. .. .. ... ... 39

4.2.4. Flow-sensitivity: Pi type constraints . . . .. .. .. .. ... ... 40

4.2.5. Typenarrowing . . . . . . . . . . ..o 41

4.3. Constant propagation . . . . . . . . ... 44
4.3.1. Constant propagation lattice . . . . . . . . .. ... ... ... ... 45

4.3.2. Transfer function and feasible successors . . . . . . . ... ... .. 45

4.3.3. Specifics of constant propagation in PHP . . . . . . . ... ... .. 46

4.3.4. Combining type inference and constant propagation . . . . . . . .. 49

4.4. Dead code elimination . . . . . . . ... 0oL 50
4.4.1. Algorithm . . . . . .. ..o 50

4.4.2. PHP specific considerations . . . . . . .. .. .. ... 51

4.5. Type specialization . . . . . . . . . . ... 52
4.6. SSA liveness checks . . . . . . . . ... 53
4.7. Copy propagation on conventional SSA form . . . . .. ... .. ... ... 56
4.8. Function inlining . . . . . . . .. ..o L 58
4.9. Propagating information along the dominator tree . . . . . . . . . ... .. 29
4.10. Testing and verification . . . . . . . . . ... oo 60

5. Results 61
5.1. Microbenchmarks . . . . . . . . . . ... 61
5.2. Real applications . . . . . . . . .. 63

6. Conclusion and Outlook 65
A. Source Code 67
Acronyms 68
Bibliography 69

viil



List of Figures

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.

4.1.
4.2.
4.3.
4.4.

5.1.
5.2.

PHP compilation and execution pipeline . . . . . ... ... ... .. ... 17
Control flow graph orderings . . . . . . . . . . ... ... L. 19
Dominator trees . . . . . . . . .. 20
Motivation for SSA form . . . . . . .. ... 22
Strict SSA form . . . . . ... 23
SSA form with assignments treated asuses . . . . . .. ... ... .. ... 26
Motivational example for extended SSA form . . . . . . . ... ... .. .. 27
¢-placement after w-placement . . . . . . . . ..o 29
Motivating example for type narrowing . . . . . . . .. ... L. 42
Constant propagation lattice . . . . . . . . . ... ... L. 45
Handling of references during constant propagation . . . . . . . .. .. .. 47
Related variable interference after copy propagation . . . . . . .. .. ... 56
Normalized execution times for microbenchmarks . . . . .. ... .. ... 62
Effect of indiviual optimizations on microbenchmarks . . . . . . ... ... 63

X



List of Listings

SN s

Main loop of propagation framework . . . . ... ... ... ... .. ... 33
Handling of individual instructions in the propagation framework . . . . . 34
Marking edges as feasible in propagation framework . . . . . . . . . .. .. 35
Main component of type narrowing algorithm . . . . . .. ... .. .. .. 43
Dead code elimination algorithm . . . . . .. .. ... ... ... ... .. 50
Instruction granularity live-in oracle using Boissinot’s algorithm . . . . . . 56



1. Introduction

Dynamic scripting languages are commonly chosen over classic statically typed languages,
because their use of dynamic typing and lack of an explicit compilation step enables a
higher degree of productivity. Unfortunately, the same features that make these languages
productive, also make them hard to implement efficiently: In order to support their
dynamic features, scripting languages are traditionally implemented using interpreters.

An increasingly common avenue used to improve the performance of such languages,
is the employment of a just-in-time (JIT) compiler, which generates native machine code
at runtime. However, the implementation of JIT compilers is not only a major feat of
engineering, but also carries a significant increase in implementation complexity. This
thesis pursues a different approach, namely the use of classical data-flow optimization
techniques to improve the quality of the interpreted bytecode.

We implement our performance optimizations for the PHP programming language,
which is commonly used for the server-side implementation of web applications. PHP
powers both some of the largest websites such as Facebook!, Wikipedia and Yahoo, but
also countless small websites, like personal blogs, discussion forums, etc.

End-to-end web application performance depends on more factors than only the per-
formance of the server-side programming language, in particular it also includes net-
work transmissions, processing of database queries and client-side rendering. Nonetheless
PHP’s performance plays an important role in determining the response time, throughput
and resource utilization of web applications.

Our approach to optimization is to reduce runtime overhead by applying classical data-
flow optimizations, such as constant propagation, dead code elimination and copy prop-
agation, to the PHP bytecode in static single assignment (SSA) form. Type inference is
used both to enable the use of type-specialized instructions and to ensure the correct-
ness of other optimizations, which are often only applicable to certain types. We also
experiment with the impact of inlining on other optimizations.

The primary challenge we face, is that these classical optimization techniques have
been developed in the context of statically typed and compiled languages, as such their
application to a programming language that is not only dynamically and weakly typed, but
also supports a plethora of other dynamic language features, requires special consideration.

Unlike many alternative scripting language implementations, which chose to omit cer-
tain little used and particularly hard to optimize language features, our optimizations
are implemented as an extension of the reference implementation, and as such need to
support the full scope of the language. However, we did submit a number of language
change proposals for the removal of some particularly problematic edge-cases as part of

Facebook uses the Hack programming language, which is derived from PHP.
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this work.

To summarize our results, we have found that significant performance gains are possible
for numerically intensive and tightly looped code, as is typically found in benchmark
scripts. We achieve a mean speedup of 1.42x on PHP’s own benchmark suit. However,
when considering real applications we have found the speedup to be limited to 1-2%. The
reason for this is in part that we cannot derive sufficient static information for realistic
applications, however a limitation of the current compiler, which requires all files to be
compiled independently, also plays a significant role.

1.1. Historical context

This thesis is part of a larger effort to improve the performance of the reference PHP
implementation. For many years performance of the PHP implementation has stagnated,
with optimization being limited to small incremental improvements.

To reduce the resource utilization of their own PHP deployment, Facebook implemented
first the HipHop compiler [37], which compiles PHP code to C++, and later the HipHop
Virtual Machine (HHVM) [1], which makes use of a just-in-time compiler. Both of these
alternative PHP implementations have shown that it is possible to significantly improve
the performance of real-world PHP applications, while maintaining a high degree of com-
patibility with the reference implementation.

In part in response to these developments, Zend Technologies also started an attempt
at implementing a JIT compiler [30] for PHP, using LLVM for code generation. However,
this compiler was both extremely slow and did not show any performance advantage on
real applications. It was concluded that other parts of the PHP implementation needed
to be improved before a JI'T could be worthwhile.

As such, an effort was started to redesign all core data structures to reduce memory
usage, indirection and allocation, and make them generally more CPU cache efficient.
This effort, together with many other optimizations, eventually resulted in a new major
version, PHP 7. For many applications PHP 7 improved throughput by a factor of two,
while also significantly reducing memory utilization. This made performance of PHP 7
competitive with HHVM, even though HHVM still holds an advantage if a precompiled
code repository is used.

Because PHP 7 already implemented most of the low-hanging optimization fruit, further
performance improvements require the pursuit of different avenues. One possibility it to
revisit the use of a JIT compiler. Another is to improve the implementation of the virtual
machine and the used instruction format. Another, which is pursued in this thesis, is the
use of compiler optimizations to improve bytecode quality.

1.2. Prior work

In the following we will provide a short overview of related prior work, focusing mostly
on the use of static analysis techniques, and in particular of type inference, to improve
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the performance of dynamic languages. As such, we will usually not cover just-in-time
compilers, but include some static analysis work not related to optimization. We will
first cover prior work in other dynamic languages and then, in more detail, prior work
applying directly to PHP.

In other dynamic languages The Starkiller project [29] compiles Python code into
C++. It uses an augmented Cartesian Product Algorithm (CPA) [2] for type inference.
The basic idea of the CPA algorithm is that for a given function call, the cartesian product
of the possible types of the arguments is computed, resulting in a set of monomorphic
(single-type) argument type lists. The result type of the call is then the union of the
result types for the individual monomorphic argument type combinations.

Cannon [13] extended the Python interpreter with local type inference based on iterative
type analysis [14], in order to allow the use of type-specialized instructions. Unlike the
Starkiller project, no language restrictions were imposed in this case. However, Cannon
concluded that the observed speedup (1% even for microbenchmarks) is not worthwhile.

The Diamondback Ruby (DRuby) project [20] extends the Ruby programming language
with support for type annotations, which in conjunction with type inference, can be used
to discover type errors. The PRuby project [19] extends DRuby by the ability to gather
runtime information about use of dynamic language features through instrumentation,
which is then used to replace dynamic features with statically analyzable alternatives.

Jensen et al. [23] present a static analysis infrastructure for JavaScript, which performs
type inference and points-to analysis based on abstract interpretation and the monotone
framework. This work is not targeted at optimization, but rather wishes to provide type
information for program comprehension and tooling. Hacket and Guo [22] describe how
unsound type inference can be combined with dynamic type updates that are performed
if unlikely situations are hit during evaluation of just-in-time compiled code.

An interesting approach to incorporating type information during execution is dynamic
interpretation [34], which interprets programs based on a flow graph, which directs pro-
gram flow not only based on control flow, but also on type changes. The flow is split at
all points where type uncertainly exists, thus allowing the use of fully type-specialized
instructions on the individual branches.

Wiirthinger et al. [36] investigate the use of abstract syntax tree (AST) based inter-
preters that incorporate type feedback at run-time. The rationale for using an AST-based
interpreter over a more commonly used bytecode interpreter, is that ASTs are more mal-
leable: It is easy to modify an AST at run-time to incorporate type information, while
bytecode modifications may require more involved updates of jumps offsets. Brunthaler
[12] approaches the problem of dynamic bytecode updates by adding an additional inline
cache pointer to each instruction. This cache pointer can then updated at run-time to
reference a specialized implementation of the operation.

In PHP The undoubtedly most practically significant alternative PHP runtime is the
HipHop Virtual Machine (HHVM) [1], which not only managed to improve performance
significantly relative to PHP 5, but also maintains language parity to a high degree.
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HHVM uses a just-in-time compiler, which operates on tracelets, which are regions of
code with a single entry but potentially multiple exits. The tracelet is symbolically exe-
cuted in a single-pass, forward data-flow analysis, which annotates instructions with input
and output types where possible. Input types that could not be statically determined are
instead observed at runtime. For a set of observed types, type guards are inserted at the
start of the tracelet, allowing the application of classic compiler optimizations based on
mostly complete type information. If a type guard fails, the tracelet is compiled with
another set of input types and the guards are rewired to jump to the new tracelet. This
can be repeated to a certain limit, allowing the handling of mildly polymorphic code
(however, the vast majority of code has been observed to be monomorphic).

The precursor of HHVM is the HipHop compiler (HPHPc) [37], which compiles PHP
code to C++. The compiler infers types based on an adaptation of the Damas-Milner
constraint-based algorithm [18] and specializes the generated code based on the results.
All operations are performed directly on the abstract syntax tree (with control flow graph),
no bytecode representation is used. HPHPc imposes a number of restrictions on the
language, and exploits them for optimization, most notable of which are the requirement
that all code must be known in advance and that integer arithmetic does not overflow to
double.

The work that is likely most closely related to what is attempted in this thesis, is Paul
Biggar’s dissertation on the implementation of the PHP to C compiler phe [5]. As phc
was implemented prior to PHP 5.4, where support for call-time pass by reference was
removed, a large focus of this work is on modeling the aliasing behavior of references.
Hashed SSA form [15] is used, which extends SSA form by additional 1 (may-use) and x
(may-define) nodes. Alias analysis, type inference and constant propagation are performed
simultaneously and before construction of SSA form.

We do not follow this methodology, as we no longer need to consider call-time pass by
reference, and we further believe that the alias analysis results are only correct if PHP’s er-
ror handling mechanism is ignored. While phc intentionally did not model error handling,
this option is not available to us. As such, there is an overlap with the general analysis
passes we implemented in this thesis (such as type inference and constant propagation),
however both the methods that are used and the general architecture are different.

The dynamic nature of PHP makes it hard for an ahead-of-time compiler to generate
efficient code, while at the same time implementing a just-in-time compiler from scratch
requires a major feat of engineering. For this reason a number of alternative PHP im-
plementations attempt to leverage existing JIT compilers instead: Phalanger [4] and its
successor Peachpie [38] target the Common Language Runtime (CLR, the .NET runtime),
while Quercus [39] and P9 [31] target the Java Virtual Machine (JVM). As both the CLR
and JVM are statically typed virtual machines, compilation for them has many of the
same challenges as compilation to C or C++. The hope is that their JIT compilers are
in a better position to optimize the generated bytecode.

Finally, there are a number of instances where SSA form has been applied to PHP code
for the purpose of static analysis rather than optimization. One example is Minamide’s
work on the “static approximation of dynamically generated web pages” [25], which uses
SSA form to construct an approximate context free grammar for the output of a program,
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for use in security analysis and verification. Another is Rimsa et al. [28], who perform
efficient taint analysis using a sparse SSA-based algorithm. In particular, they use e-SSA
form [6] to improve control flow sensitivity, which is a modification of SSA form we also
employ in a different capacity.

1.3. Attribution

This work is based on several components implemented as part of Zend’s experimental JI'T
project [30]. In particular the implementation of static single assignment (SSA) form, as
well as value range and type inference are reused. The main author of these components
is Dmitry Stogov, the lead engineer of the PHP project.

These components will be described in varying detail, depending on how important they
are for further considerations and how much we had to work with and on them. Type
inference is described in detail, both because it plays an important role for other analy-
sis passes and because we have significantly departed from the original implementation.
Apart from countless correctness fixes, we switched to a different, control flow sensitive
algorithm, extended inference to use m-nodes and implemented a new type narrowing
algorithm, as the previous one had correctness issues.

The SSA implementation is also discussed extensively, because it is the basis of all
further work. However, in this case we will describe the construction algorithms only in
broad strokes, as we did not modify them apart from various correctness and performance
fixes. Only the placement of m-nodes is discussed in more detail, as more significant
changes were necessary to ensure correctness in this case.

We do not discuss value range inference, as we had little contact with it and, while
it does contribute to the quality of the type inference results, an understanding of value
range inference is not of particular importance to the remainder of the work.

We mention this upfront to avoid creating the impression that everything discussed in
this thesis has been implemented by us.

1.4. Outline

The remainder of this thesis is split into five chapters, for which a brief overview will be
provided here:

Chapter 2 discusses semantics of the PHP programming language insofar as they are
relevant to optimization. This chapter illustrates many of the issues that make optimiza-
tion of PHP challenging and also motivates some of the design choices we have made for
our optimization passes.

Chapter 3 introduces a number of prerequisites for the primary optimization work. An
overview of the PHP execution model and virtual machine are provided. More impor-
tantly, static single assignment form and PHP specific modifications to it are introduced
in this chapter.

Chapter 4 subsequently presents the analysis and optimization passes that have been
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implemented. This includes descriptions of a general data-flow propagation framework,
as well as type inference and constant propagation based on it. Other optimizations that
are described include dead code elimination, copy propagation and type specialization.

Chapter 5 then presents the results of this work, by considering the performance impact
on both microbenchmarks and real applications. The impact of individual optimizations
is analyzed, and the reasons why certain optimizations do or do not apply is discussed.

Chapter 6 provides a conclusion and outlook. Finally, Appendix A contains instructions
for obtaining the source code developed for this thesis.



2. PHP Language Semantics

This chapter aims at providing an overview of PHP language semantics, insofar as they
are relevant for optimization. We will dispense with a description of general language
syntax, as it is sufficiently similar to other C-like languages and not particularly relevant
for our purposes.

Instead we will focus on covering various edge-case semantics that may be problematic
for performing optimizations. Based on these, we will also motivate some of the choices
we have made in our approach to optimization and explain why certain avenues were not
pursued.

2.1. Dynamic and weak typing

PHP is a dynamically typed language, which means that types of variables are generally
only determined at runtime and even then may vary. Additionally the type system is weak,
by which we mean that use of mismatched types in operations generally does not lead to
an error, and is instead handled through implicit and potentially lossy type conversions.

For example, the operation "2" * "5" evaluates to integer 10, with the two strings
being implicitly cast to integers before the multiplication is performed. Following the
same logic, the operation "foo" * "bar" evaluates to integer zero, because the cast of
non-numeric strings to integer is defined as zero (since PHP 7.1 a run-time warning is
emitted for this case).

Additionally it is common for basic operations to return different result types depending
not only on the types but also specific values of the input operands:

var_dump(1l + 1); // int(2)
var_dump(1.0 + 1.0); // float(2.0)
var_dump(PHP_INT MAX + 1); // float (9.22337203685/8E+18)

var_dump(['a' => 1] + ['b' => 21); // ['a’' => 1, 'b' => 2]

This example illustrates that an addition operation may evaluate to either an integer,
a floating-point number or an array®. A float result is possible not only if one of the input
operands is a float, but also if the result of an integer addition overflows. This kind of
result type overloading makes it hard to statically infer types.

IThe “array” type in PHP is an ordered dictionary implemented using a hashtable. The language makes
no strong distinction between vectors and dictionaries.
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2.2. References

PHP supports a concept of references, which are in many ways similar to pointers in C
or references in C++. Consider this example comparing use of references in PHP with
roughly equivalent C++ code:

$varl = 42; int varl = 42;

$var2 =& $vari; int& var2 = vari;

$var2 = 24; var2 = 24;

var_dump($varl); // int(24) printf ("%d\n", varl); // 24

However, there are some differences to note: Firstly, references in PHP are fully sym-
metric, there is no concept of a directional “reference to” between two variables. The
assignment $var2 =& $varl will not only make $var2 a reference to $varil, but also
$varl a reference to $var2, or more accurately, both variables will be references to a
hidden shared value and can be used completely interchangeably henceforth.

Secondly, C++ requires reference variables to be explicitly declared, while in PHP a
non-reference variable can be converted into a reference variable through some form of
reference assignment. In particular this can also be control flow dependent. In some
cases, most notably the by-reference argument passing discussed below, it may even be
impossible to statically determine whether a variable holds a reference.

One particularly problematic aspect of references is their behavior when used as array
elements, in which case the reference will be preserved even if the array undergoes a
by-value copy or argument pass. For instance:

$value = 42;
$array = [&$valuel; // create array containing reference
$copy = $array; // by-value copy

$copy[0] = 24;
var_dump($value); // ant (24)

In this example $copy = $array performs a by-value copy of the array, but nonetheless
the $copy [0] element remains a reference. For example this implies that a write into an
array that is subsequently not used cannot be eliminated as dead code, unless it is known
that the written element cannot be a reference.

Apart from reference assignments using =&, there are a number of other ways in which
references can be created, the most important one being by-reference argument passing:

function inc(&$n) { $n++; }
$1i = 1;

inc($1);

var_dump($i); // int(2)

Here the function call will create a reference between the $n function argument and the
$i local variable. Notably, there is no indication that by-reference argument passing is
being used on the side of the caller.
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Because the PHP compiler is, at least currently, limited to compiling each file separately,
it is very common that the signature of the called function (defined in a different file) is
not known. In this case we have to pessimistically assume that by-reference argument
passing is being used, even though this is most likely not the case. Due to reasons outlined
in section 2.5, it is not feasible to perform optimizations on variables that are potential
references.

The combination of these two factors implies that any variable that is passed to an
unknown function is effectively excluded from optimization from that point forth. This is
one of the most significant issues when optimizing PHP code within the existing compiler
framework.

2.3. The use-def nature of assighments

In many languages an assignment to a variable has no behavioral dependence on the
previous value held by this variable. In compiler terminology, a variable assignment
constitutes a definition of the variable, but not a use. In the general case, this is not true
in PHP for three reasons, which will be illustrated in the following.

The first and practically most important one is that the assigned-to variable may hold
a reference, in which case the modification happens not to the variable itself, but rather
to the content of the reference. Consider the example from the previous section, this time
using a C pointer analogy:

$varl = 42; int varl = 42;
$var2 =& $vari; int *var2 = &varl;
$var2 = 24; *var2 = 24;

In this case the last assignment $var2 = 24 must know the value of $var2 in order to
change the value of the reference. The nature of this assignment is particularly clear in the
analogous C code, because it contains an explicit dereferencing operation: *var2 = 24
only reads var2, but does not write to it. The actual write is performaned on the deref-
erenced value only.

The second problematic case occurs when the variable is the last user of an object that
has a destructor with observable side-effects:

class Dtor { function __destruct() { echo "Dtor\n"; } }
$var = new Dtor;
$var = 42;

In this instance the last assignment not only modifies the value of $var, but also destroys
its old value, thus triggering the object destructor. As PHP uses reference-counting, the
destruction order is deterministic? as long as no circular references are involved, and as
such precise destruction semantics should be maintained during program transformations.

2Unlike C++, PHP does not have a strictly specified destruction order. However it is generally under-
stood that (non-circular) destruction should occur as soon as possible.
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Lastly, objects implemented by PHP extensions may provide a set handler, which can
be used to overload the assignment operator. None of the core extensions use this feature,
but it needs to be taken into account in order to support third-party extensions.

Due to these three cases we have to assume, at least in absence of additional type
information, that any assignment acts both as a use and definition of the variable. This
has significant implications on the structure of the SSA graph and transformations acting
on it.

2.4. Dynamic scope introspection and modification

A somewhat peculiar feature supported by PHP is syntactic support for performing dy-
namic scope introspection through variable variables:

$var = 42;

$varName = 'var';

${$varName} = 24; // behaves as: $var = 2;
var_dump($var); // int(24)

In this example $varName stores the name of a different local variable $var and then
indirectly references it using the ${$varName} syntax. If $varName were a dynamic value
rather than a static string, the assignment through ${$varName} could modify any vari-
able in the current scope, making this language feature inherently hard to predict.

There exist a number of other ways in which the local scope may be dynamically
read or modified: For example, PHP allows executing arbitrary code using the include
and eval directives, the former acting on files, the latter on strings. While this is not
their primary purpose, these constructs inherit the surrounding scope and may perform
arbitrary modifications on it.

Additionally there are a number of functions which can also perform dynamic scope in-
trospection. As an example, the extract () function can be used to extract an associative
array into local variables. These functions are particularly problematic, because prior to
PHP 7.1 there was no reliable way of detecting calls to them, as invocations could also
occur dynamically:

$i = 42;

$fn = 'extract';

$fn(['i' => 24]1); // behaves as: $i1 = 24;
var_dump($i); // int (24)

In this example it would still be possible to detect the dynamic call $fn() and assume
that it may modify variables. However, functions may also be invoked through various
implicit callbacks such as autoloading handlers, which are automatically called in many
situations. As the inability to detect such calls without falling back to very pessimistic
assumptions would have severely limited the scope of possible optimizations, we have
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submitted a proposal to forbid dynamic calls to scope introspection functions [27], which
has been accepted for PHP 7.1.

With this change in place, we are able to detect all cases where variables may be
modified dynamically. As all the constructs described in this section are only rarely
used in practice, we limit ourselves to detecting their uses, but do not try to optimize
functions utilizing them. A more fine-grained approach would be to treat such dynamic
modifications as potential definition points for all variables in the current scope, however
we do not consider the added complexity to be worthwhile.

2.5. Error handling

PHP has three broad categories of errors: Compile-time errors, exceptions and run-time
warnings. Compile-time errors cannot be caught and abort execution of the program.
Relatively few conditions are enforced at compile-time, as most checks are delayed to
run-time instead. Exceptions work the same way as in Java, i.e. they will abort execution
of the current control path and unwind the call stack until they are caught.

Run-time warnings® will not abort execution of the current control path. The warning
will typically be either displayed or logged and some kind of error-indicating value will
be returned from the operation. Run-time warnings are problematic for optimization for
multiple reasons:

First, the possibility that an error-indicating value may be returned reduces the quality
of type inference results. For example, if we have inferred that a certain array only
contains integers, we cannot conclude that a read from this array will return an integer:
In case the accessed key does not exist, a run-time warning is issued and the return value
is null.

Second, it is possible to register an error handling function, which is automatically
invoked whenever a run-time warning is generated. Because nearly all operations in PHP
can generate run-time warnings in some situation, this means that arbitrary and unknown
PHP code can run at nearly any point during the execution of a function. This code could
potentially modify any global variable, or more generally any value that has aliases outside
the function.

However, the situation is even worse than this, because the error handler is also passed
the variable scope in which the error occurred. This allows the error handler to modify
references and objects, even if they are local to the function:

function test() {
$obj = new stdClass;
$obj->prop = 42;
echo $undef; // trigger run-time warning
var_dump ($obj->prop); // int(24)
}

3Warnings are only one out of many types of non-fatal run-time errors. For simplicity we refer to all
errors of this kind as “warnings”.
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set_error_handler(function($_1, $_2, $ 3, $_4, $scope) {
$scopel['obj']->prop = 24;

3

test();

In this example the $obj object would normally be considered local to the function, a
fact that could be established through escape analysis. However, as the error handler is
passed the variable scope, it can still perform arbitrary modifications to object properties
and references.

For this reason we do not attempt to show that the value or type of a reference or object
property is stable through use of escape and alias analysis: There will always exist the
possibility of a modification through the error handler, and for realistic code we generally
cannot prove freedom of run-time warnings. This would only become worthwhile if the
scope parameter of the error handler could be removed in the future.

2.6. Global variables and the pseudo-main scope

Unlike many other languages, PHP does not implicitly import variables from the global
scope into functions. Instead, use of global variables needs to be made explicit by using
the global keyword or the special $GLOBALS dictionary:

function incGlobal() {
global $var; /* or */ $var =& $GLOBALS['var'];
$var++;

}

$var = 1;

incGlobal();

var_dump($var); // int(2)

This strict separation comes to our advantage, as we can easily detect variables that
refer to globals and not perform optimizations on them (which are not possible due to
the issues described in the previous section).

A PHP file can, next to declarations for functions, classes and so on, also contain free-
standing code, referred to as pseudo-main code. It should be noted that the pseudo-main
scope of a file does not necessarily coincide with the global scope. Rather, the pseudo-
main code will adopt the scope of the location it is included in, which may be the global
scope, but may also be a local function scope, if the file is included inside a function body.

This scope adoption makes it essentially impossible to perform optimizations on pseudo-
main code. The following example illustrates how the result of even very simple code can
be drastically altered if the scope is initialized appropriately before the file inclusion:

// filel.php

$a = 1;
$b = 1;
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var_dump($a + $b); // int(11) if run through file2.php

// file2.php

class Dtor { function __destruct() { $GLOBALS['b'] = 10; } %}
$b = new Dtor;

include 'filel.php';

On the assignment $b = 1 the __destruct method runs and modifies the value of $b to
10, thus changing the result of the addition. There are a number of other ways in which
a similar result can be achieved, for example by initializing the scope with references
(causing aliasing) and by using error handler callbacks to modify variables at unexpected
program points.

Because of this high degree of unpredictability we do not attempt to optimize pseudo-
main code.

2.7. $this binding in methods

PHP’s object orientation model draws many of its features from Java. As such it is
relatively strict when compared to other dynamic languages, e.g. it does not allow re-
placing class methods at runtime (“monkey patching”). However, there are a number of
type-safety loop-holes.

Instance methods in PHP have a $this object and a scope self, which refers to the class
the method was declared in. One might expect the invariant $this instanceof self to
hold, i.e. the $this object to be an instance of the class the method is being called on,
or one of its children. However, this is not the case:

Prior to PHP 7.1 it was possible to force $this to refer to an arbitrary object, by using
a combination of the reflection system and closure rebinding:

class A {
public function method() {
var_dump(get_class($this)); // string(8) "stdClass"
+
}
$closure = (new ReflectionMethod('A', 'method'))->getClosure(new A);
$closure->bindTo(new stdClass, 'A')();

This example acquires a reference to the method as a closure (anonymous function)
and then calls it with $this bound to an stdClass instance (which is not an instance
of A). This is problematic for optimization, because it makes it impossible to determine
which method or property a $this access refers to, which is important for the purposes
of type inference and specialization. As part of this work, we have effected this type of
incompatible scope binding to be forbidden in PHP 7.1 [26], as such it is no longer a
concern.

13



2. PHP Language Semantics

A less significant issue is that $this can also be entirely undefined inside an instance
method. This occurs if an instance method is called statically, a legacy behavior that is
still supported from PHP 4 days:

class A {
public function method() {
var_dump($this); // Error: Using $this when not in object context
}
}
A::method(); // Deprecated: Non-static method A::method()
// should not be called statically

However, this is less problematic, because any access to $this in this situation will
generate an exception. As this causes the current control path to be left, we can safelty
optimize as if $this were defined. The only optimization that requires special considera-
tion is inlining, because we need to ensure that the exception is not elided.

2.8. Type annotations

PHP supports annotating function and method signatures with types:
function array map(callable $fn, array $array) { /* ... */ }

Prior to PHP 7.0 it was only possible to annotate parameters and types were restricted
to class/interface names, as well as array and callable. In PHP 7.0 support was ex-
panded to allow scalar types and return type annotations:

function add(int $a, int $b): int {
return $a + $b;

}

Unlike a number of other dynamic languages (like Hack or TypeScript) where type
annotations are only used for verification by static analysis, type annotations in PHP are
enforced by the runtime.* However, types are only checked on entry into and return from
the function, they do not enforce that the type of a variable does not change. As such
the following code is valid and will not generate a runtime error:

function foo(int $bar) {
$bar = "string";

by

4Prior to PHP 7.0 it was possible to circumvent type checks by discarding recoverable errors in an error
handler. In PHP 7.0 this loophole has been fixed as part of a move to exceptions.
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Nonetheless these type annotations provide a valuable starting point for type-inference.
However, as support for scalar types, which are the most valuable from an optimization
perspective, has only been added recently, there is little code in the wild making use of
them yet.

For PHP 7.1 a proposal has been submitted to add support for typed properties [32],
which would guarantee that reads from such properties always returns a certain type:

class User {
public int $id;
public string $name;

This would significantly increase the amount of statically available type information,
as it currently isn’t feasible to determine that a property holds a specific type, e.g. due
to the issues described in section 2.5. However, the typed properties proposal has been
declined due to uncertainties about their semantics, so we cannot take advantage of this
information (yet).
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This chapter describes a number of prerequisites for the analysis and optimization passes
discussed in the next chapter. First, a very brief overview of PHP’s compilation pipeline
and instruction format is given. Then, we will proceed to introduce various structures
needed for optimization, such as control flow graphs, dominator trees and most impor-
tantly static single assignment (SSA) form. As we’re heavily dependent on SSA form, it
is described in some detail and a number of PHP specific aspects are covered.

3.1. Compilation and execution pipeline

The PHP compiler is a classical compiler frontend, which takes input code, tokenizes it,
builds an abstract syntax tree and finally compiles it to an intermediate representation
(IR), which we call opcodes. At this point there are two ways to proceed, as illustrated in
Figure 3.1:

The first is to directly execute the compiled opcodes on the virtual machine (VM).
This implies that the opcodes for the entire application need to be recompiled on each
web request (or other invocation of PHP). This deployment model is sometimes used by
cheap shared hosting platforms, where many websites are hosted on a single server, with
no particular expectation of performance.

The second model, which is used by professional PHP deployments, is to cache the
compiled opcodes in a shared memory (SHM) opcode cache, so that compilation occurs
only once. As in this case compilation performance is less important, some additional
opcode optimizations can be applied.

The currently existing optimization pipeline is relatively simplistic: It performs a num-
ber of peephole optimizations and additionally also compacts the literals table and the
temporary variable space. However, it does not perform any global data-flow optimiza-
tions. It is the goal of this work to extend the existing optimizer to perform such opti-
mizations on static single assignment form.

It is important to realize that, while there are distinct compilation and execution phases,
they are interleaved. Additional code is included at run-time, at which point opcodes for
it are either compiled or loaded from SHM. At the time a file is compiled, it may be
referencing functions and classes that have not yet been loaded.

The opcache extension, which both implements the SHM cache and hosts the optimizer,
has an additional severe limitation: Not only does it have no knowledge of symbols that
will be loaded in the future, it also has no knowledge of symbols loaded in the past. Each
file is compiled completely independently, starting from a clean slate. This implies that
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Figure 3.1.: PHP compilation and execution pipeline. First row: Opcodes are directly
run on VM, recompiled on every request. Second row: Opcodes are compiled
once and cached in SHM, minor optimizations are applied. Third row: The
optimizer is extended to perform data-flow optimizations on SSA form. The
dashed arrow represents that additional code can be loaded and compiled at
run-time.

during optimization we do not know the signatures of any functions defined outside the
current file, which requires the use of some very pessimistic assumptions.

We expect that we could achieve significantly better results if this limitation were
removed. Even more advantageous would be a compilation mode similar to the RepoAu-
thoritative mode supported by HHVM, which requires all code to be known in advance
and forbids run-time loading of additional code.

3.2. Instruction format

The PHP virtual machine uses what is essentially a three-address code, with each in-
struction having at most two input operands and one result operand. In some cases input
operands are also written in-place.

There are three primary operand types: Constants, temporary variables and real vari-
ables. Constants can be not only integers and other scalar values, but also strings or
arrays. They are stored in a separate literal table, rather than being encoded as instruc-
tion immediates.

Each variable used by a function is assigned a certain slot on the virtual machine stack.
There are two (primary) types of variables: “Real” variables, which we also call compiled
variables, correspond to actual variables in the program code, such as $x. Temporary
variables on the other hand are introduced by the compiler, e.g. to hold the result of an
expression.

There are several important differences in how these two variable types are handled:
Real variables are fully initialized when a function is entered and destroyed when it is
left. Instructions referencing real variables do not consume the variables, i.e. it is possible
to use the same variable in multiple instructions. Temporary variables on the other hand
are not initialized upfront, instead the compiler ensures that they are only read after an
explicit assignment. If an instruction uses a temporary variable, it is also responsible for
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destroying the value. As such, temporary variables can be read only once (unless the are
assigned again).

We will not discuss the instruction format or the functioning of the virtual machine in
further detail, as it is not particularly important for further considerations. However, the
distinction between temporary and real variables is significant in a number of places.

3.3. Control flow graph

The PHP compiler emits instructions directly into a linearized array structure, with jump
instructions using relative offsets. For global optimizations it is expedient to convert this
linear structure into a control flow graph (CFG).

The vertices of a CFG are formed by basic blocks, which are linear instruction sequences
with one entry point at the start of the block and one exit point at its end. Apart from
these, there may be no jumps or jump targets inside a basic block. Edges in the CFG
describe possible targets of a jump.

The block which is executed first upon entry into a function is designated the entry
block. It is common to also designate a single dedicated ezit block, through which control
passes when leaving the function. We do not use a single exit block, instead any block
that does not have outgoing edges is considered an exit block.

Many algorithms either require that the control flow graph be traversed in a certain
order, or, even in cases where using a certain order is not necessary for correctness, will
converge faster if the basic block ordering is chosen advantageously. When performing a
depth-first search (DFS) of the CFG starting at the entry block, preorder is the order in
which blocks are first entered, while postorder is the order in which they are left (after
traversing all successors). Further, we say an edge (n,m) is a back edge if m is an ancestor
of n in the DFS tree.

Postorder has the important property that, back edges notwithstanding, all successors
are visited before their predecessors. Conversely, for reverse postorder (RPO) predeces-
sors are visited before successors. As such RPO provides the most intuitive ordering of
blocks, as it typically corresponds most closely to the original structure of the code. Both
postorder and RPO are important for data-flow algorithms, as they allow propagation of
data-flow properties (backwards in the case of postorder, forwards in the case of RPO)
on non-cyclic graphs in a single iteration.

Further, we refer to the order in which the compiler has originally emitted the blocks as
the natural order. In most cases this coincides with RPO, however loop conditions may
occur out of order (to avoid an additional jump on every iteration). Figure 3.2 illustrates
the different CFG orders for a simple incrementing for loop. Natural order and RPO
here differ by the placement of the loop condition block. This example also illustrates
that preorder and reverse postorder are not the same. The shown preorder is one of two
possibilities, depending on the order in which successors of the loop condition block are
visited (the other preorder is the same as RPO).
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Figure 3.2.: Control flow graph orderings: (a) Natural order emitted by the compiler. (b)
Reverse postorder, where, back edges notwithstanding, all predecessors occur
before successors. (c) One possible preorder. The other is equivalent to RPO
in this instance.

3.4. Dominance, dominator trees and dominance
frontiers

An important concept for optimization in general and static single assignment form in
particular is that of dominance. A block n is said to dominate block m, if every path from
the entry block to m contains n. n is said to strictly dominate m if additionally n # m
holds. In practical terms, this means that n always executes before m (if m executes at
all).

The immediate dominator of n, idom(n), is the unique block which strictly dominates
n, but does not strictly dominate any other block strictly dominating n (in other words,
it is the “closest” strict dominator of n). The entry block has no immediate dominator,
as it isn’t strictly dominated by any block. The immediate domination relation imposes
a tree structure on the CFG: This dominator tree is rooted at the entry block, and each
node has as children the nodes it immediately dominates. This forms a tree structure
because immediate dominators (parent nodes in the dominator tree) are unique.

Figure 3.3 shows dominator trees for two sample control flow graphs. Case (a) demon-
strates the structure of the dominator tree for two common constructs, loops and if-then-
else branches. Case (b) is presented to illustrate that the dominator tree is not always
as obvious as in the former case. Here a CFG with an irreducible loop produces the
degenerate case of a completely flat dominator tree.

Many algorithms with different complexity of implementation and asymptotic runtime
are known for the construction of dominator trees. One of the most important ones is
the Lengauer-Tarjan algorithm [24], whose asymptotic complexity is nearly linear in the
size of the graph. We do not implement this algorithm and instead use the iterative
data-flow algorithm by Cooper et al. [16], which has worse asymptotic complexity, but
is significantly simper to implement and known to perform well for the relatively small
graphs likely to be encountered by a compiler.

!The paper by Cooper et al. claims that their algorithm outperforms Lengauer-Tarjan for compiler-
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(a) Loop and If-Then-Else (b) Degenerate case
Figure 3.3.: Two control flow graphs and their corresponding dominator trees. Example
(a) illustrates the structure of the dominator tree for two common syntax
elements, namely loops and if-then-else structures. Example (b) shows a

degenerate case involving an irreducible loop that results in a flat dominator
tree.

Cooper’s algorithm improves on an earlier algorithm attributed to Allen and Cocke [3],
which iteratively solves the data-flow equations

Dom(ng) = {ne}

Dom(n) = ( N Dom(p)) U {n},

pEpreds(n)

where Dom(n) refers to the set of all dominators of node n, preds(n) the set of its pre-
decessors, and ng the entry block. Cooper’s “engineered” algorithm (Figure 3 in [16])
improves on this by implementing the dominator set intersection in a way that does not
require maintaining the sets in memory and instead directly computes the dominator tree.

Another related concept that is important for SSA construction is that of dominance
frontiers. The dominance frontier DF(n) of a node n is the set of all nodes m, for which
n dominates an (immediate) predecessor of m, but does not strictly dominate m itself.
Intuitively, the dominance frontier is where the dominance of n stops.

To compute dominance frontiers we use the algorithm in Figure 5 of the same paper
[16]. This algorithm does not directly compute the dominance frontier of a node n, in-
stead it computes the set of nodes which contain n in their dominance frontier.? This is
accomplished simply by walking the dominator tree upwards, starting from the predeces-
sors of a multiple-predecessor block n and ending at the immediate dominator of n, and
adding all visited nodes (apart from the immediate dominator) to a set.

generated graphs. However this is disputed by Georgiadis et al. [21], who claim that the simple
variant of Lengauer-Tarjan shows better performance characteristics even for small graphs, but do
acknowledge that Cooper’s algorithm is competitive.

2While this can obviously also be used to compute the dominance frontier sets proper, it is not necessary
for the SSA construction approach we use.
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3.5. Live-variable analysis

The construction of pruned SSA form (defined later in section 3.6.2), requires information
about the liveness of variables. A variable is live at a certain program point, if a use of
this variable is reachable through a path that does not include writes to this variable.
Due to the assignment semantics discussed in section 2.3, in PHP we have to treat all
assignments to real variables as both a read and write point. However, normal read /write
semantics apply to VM temporaries.

We compute liveness information using classic iterative data-flow analysis: The set
Use(n) is defined to contain all variables that are read before being written to in block n.
The set Def(n) contains all variables that are written to in block n. Based on these sets,
we consider the data-flow equations

Out(n)= |J In(s)

s€esuces(n)
In(n) = Use(n) U (Out(n)\ Def(n)),

where the In(n) and Out(n) set consist of the variables that are live at the start or end
of block n, respectively. These equations can be solved by initializing In(n) and Out(n)
to empty sets and iterating the equations until a fixed-point is reached.

As live-variable analysis propagates flow information backwards, postorder iteration is
used to improve convergence speed. This ensures that, loops notwithstanding, successors
will be visited before predecessors. To avoid recomputing sets that cannot have changed,
a worklist is used, into which only predecessors of modified blocks are inserted. Lastly,
all sets used in this computation are represented as bitsets of size #(blocks) x #(vars).

It should be noted, that the definition of the Def(n) set is flexible in that it can either
include all variables written a block, or only those that are written before first use, thus
making it symmetric with Use(n). Due to the structure of the flow equations, both
definitions result in the same fixed-point. We use the former variant, because this form
of the Def(n) set can later be reused during SSA construction.

3.6. Static single assignment form

As most of the analysis and optimization passes we have implemented operate on static
single assignment form, this topic will be covered in some detail. First, the reasons
for using SSA will be motived, then some of its properties discussed and the used SSA
construction algorithm outlined. Furthermore we will discuss some specifics of SSA form
when applied to PHP, and describe an extension of SSA form using m-nodes, which are
used to improve the flow-sensitivity of value range and type inference. Our discussion of
SSA properties is based on definitions from the SSA book [11].

3.6.1. Motivation

Before moving on to the more technical aspects of SSA construction, we would like to
motivate why SSA form is commonly employed by optimizing compilers in general, and
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v = 42 vy =42 vy =42

if P if P if P
v = "string" v = "string" vy = "string"
use v use vUq use vUs

v3 = P(v1, v2)
use v use U7 use vs

(a) Non-SSA form (b) SSA precursor (c) SSA form

Figure 3.4.: Motivation for SSA form: In non-SSA code (a) modeling variable types re-
quires associating the type with (variable, program point) pairs, while in
SSA-form (c) the type can be associated directly with the variables. Figure
(b) shows an intermediate consideration without ¢ nodes.

also by this project in particular. To this purpose we consider the example control flow
graph shown in Figure 3.4 (a). In this example the variable v is written twice, once with
an integer value and once with a string value. The variable is also used twice.

One question that is important for many analysis passes is what types certain variables
may have at runtime. With the code in its current form, the best we can say about the
variable v in general is that it may contain either an integer or a string. However, this
information is not sufficiently precise, as it can be clearly seen that at the first use of
v the variable always holds a string. To model this fact accurately, it is not sufficient
to associate a type with a variable, instead it needs to be associated with a (variable,
program point) pair. This representation is not memory efficient and generally hard to
work with.

SSA form resolves this issue by splitting the variable v into multiple variables, one for
each assignment, as shown in Figure 3.4 (b). This means that the integer value is assigned
to vy, while the string value is assigned to vs. Uses of v are also renamed depending on
which assignment reaches them.

The only problem with this scheme is that for the last use of v we cannot statically
determine whether value v; or vy will reach it, as this depends on runtime control flow.
SSA form solves this problem by introducing the concept of ¢-nodes, as shown in Figure
3.4 (c). The statement vs = ¢(v1,v2) creates a new variable v that will either take the
value of vy if the if-branch is not taken, or vy if it is taken.

Once the code is in SSA form, the original type analysis problem becomes much simpler:
Now it is possible to associate type information directly with a variable, without any loss
in accuracy. In our example v, will always be an integer, vy will always be a string and
v3 may be one of the two. Because each variable is only ever assigned once, we do not
need to worry about the type (or value) of a variable changing from one program point
to another.
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vy = undef
if P if P
N\ .

’v:... ’1)1:...

, / |

vy = P(vg, V1)
use v use v

(a) Non-strict program (b) Strict SSA form

Figure 3.5.: Figure (a) shows a non-strict program where v; may be used without being
previously defined. Figure (b) illustrates how this program may be converted
to strict SSA form by initializing the v variable to undef in the entry block.
In strict SSA form a use is always dominated by the definition.

3.6.2. SSA properties: Minimal, pruned, strict

The main property of static single assignment form, from which it also derives its name,
is that each SSA variable is only assigned once. SSA construction is usually performed
in a two-step process, where first ¢-nodes are placed as necessary, and then variables are
renamed to use a unique name for each assignment. In order for the second step to be
possible, each use of a variable must have a unique reaching definition, where a definition
D of variable v is said to reach a program point p if there exists a path from the definition
D to p that does not contain another definition of v. This unique reaching definition
property is what needs to be established by ¢-node placement.

While this is the only requirement that SSA form must satisfy, there are a number of
additional properties that may be desirable. Firstly, we would like to only place as many
¢-nodes as necessary, to reduce the number of SSA variables and the size of the SSA
graph. There are two different interpretations for whether a ¢-node is “necessary”:

Minimal SSA form requires that the minimum number of ¢-nodes is placed, which still
ensures that there is a unique reaching definition at every program point. In particular this
means that ¢-nodes will be placed even if the variable has no subsequent uses. Pruned
SSA form on the other hand requires a minimum number of ¢-nodes, such that every
use has a unique reaching definition. Compared to minimal SSA form, this means that
¢-nodes will only be placed if the variable is also live-in at the block.

Another possibility is the use of semi-pruned SSA, which may place ¢-nodes for variables
that are not live-in, but only does so if the variable is not block-local, i.e. there is a basic
block in which the variable is used before defined. However, as we treat assignments as
both uses and definitions, all non-temporary variables would be non-local, degrading the
usefulness of semi-pruned SSA form. For this reason the PHP implementation chose to
use pruned SSA form, which is why the iterative liveness analysis pass is performed prior
to SSA construction.

A further property of the SSA graph that we require is strictness, which means that
variables are always defined before they are used, for any control flow path starting at the
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entry block. In PHP this property is not automatically given, because it is possible to use
variables before they have been initialized. Figure 3.5 (a) shows an example CFG where
a variable is only initialized if a predicate P holds, but the variable is always used. This
program satisfies SSA form as defined here, as the use of v is reached only by a single
definition.

To ensure that the SSA form is strict, we insert a virtual (not materialized in the
instructions) assignment to an undef value for each variable that could potentially be
used before initialization (i.e. for all variables that are not VM temporaries). This is
illustrated in Figure 3.5 (b), however we will not include these virtual definitions from
Nnow on.

As there is always a unique reaching definition, strictness in SSA form reduces to a
simpler condition: An SSA form program is strict, if each use of a variable is dominated
by its definition. This dominance property is important for the correctness of many of the
algorithms operating on SSA.

3.6.3. Construction of SSA form

For construction of SSA form PHP follows the general approach by Cytron et al. [17],
although some of the specifics differ. Cytron’s SSA construction algorithm proceeds in
two steps: First, ¢-nodes are placed to ensure the unique reaching definition property.
Subsequently variables are renamed such that each definition uses a unique name.

To determine where placement of ¢-nodes is necessary, it is useful to consider the
concept of join sets. A node n is a join node of nodes a # b if there exist non-empty paths
from a to n and b to n such that the paths (apart from node n) are disjoint. The join set
J(S) contains the pairwise join nodes of set S.

A minimal placement of ¢-nodes is then intuitively given by the set J(D,) where D,
denotes the blocks containing definitions of v, as J(D,) accurately captures the nodes
where two different definitions of v join.> However, to ensure that the resulting SSA form
is strict, the implicit definition in the entry block e must be accounted for, so that the
actual set of ¢ placements is J(D, U {e}).

A primary result of Cytron’s work is that this set is equivalent to the iterated domi-
nance frontier DF*(D,) of D,, where DF*(S) may be defined as the fixed point of the
recurrence relation

DF\(S) := DF(S)
DF;1(S) := DF(S U DFE,(S)),

with DF(S) denoting the union of the dominance frontiers of all elements in S. Intuitively
the correspondence between DF*(D,) and J(D, U {e}) exists, because DF(D,) captures
the nodes where the dominance of a definition of v ends and as such joins with other
definitions of v (or at least with the implicit definition in the entry block). The reason

3Wolfe [35] showed that J(S U J(S)) = J(S), for this reason it is sufficient to consider J(S) directly,
rather than an iterated join set JT(S), as is necessary for dominance frontiers.
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why the dominance frontier needs to be iterated is that each placed ¢-node also constitutes
a definition of the variable, and may thus require placement of further ¢-nodes.

We perform ¢-node placement in two steps: During the iterative live-variable analysis
the Def(n) and In(n) sets were computed, which contain the variables that are, respec-
tively, defined in or live-in at block n. Based on these sets we iterate the equations

Phi(n) =In(n)N  |J  Def(m)

meDF~1(n)
Def(n) = Def(n) U Phi(n)

to a fixed point, with Phi(n) being the set of variables for which a ¢-node must be placed
in block n and DF~!(n) the set of nodes in whose dominance frontier n is contained, i.e.
precisely the set computed by Cooper’s dominance frontier algorithm described in section
3.4. The computation of the Phi(n) set intersects with In(n), because we are using pruned
SSA form and thus only place ¢-nodes for live variables. In the second step ¢-nodes are
placed in a single pass based on the computed Phi(n) sets.

This differs slightly from the approach described by Cytron et al., which explicitly
computes the DF(n) sets and then, for each variable individually, uses a block worklist
to handle dominance frontier iteration, while keeping track of which ¢-nodes have already
been placed.

The second part of SSA construction is variable renaming, where each definition of
a variable is assigned a unique name and uses are adjusted accordingly. We follow the
general approach of Cytron et al., which works by performing a preorder walk of the
dominator tree, while keeping a name stack for every variable. When encountering a use
of a variable, it will be replaced with the top name from the stack. When encountering
a definition, a newly generated name is pushed on the respective stack. After a node
and all its (dominator tree) children have been processed, the name stacks are restored
to their previous state. ¢-nodes require slightly special handling, in that a ¢ argument
corresponding to predecessor p must be renamed after block p, but not its children, has
been processed (rather than simply handling ¢-nodes as ordinary instructions at the start
of the block).

Cytron suggests the use of separate index spaces for each original variable, e.g. number-
ing variables vy, v9, v3 and wy, wy, ws. We use a shared index space instead, i.e. number
vy, Vg, U3, Wy, Wws, wg. While this is more useful for internal handling, in examples we’ll
continue to number each variable separately. We further deviate from Cytron’s construc-
tion algorithm, in that we will directly replace the top element of the name stack if a
variable is assigned multiple times in a basic block, rather than pushing a new entry to
the stack each time. This simple improvement is described in [10].

3.6.4. Specifics of SSA form in PHP

As discussed in section 2.3, assignments in PHP must be treated as both a use and
definition point of the variable.* While this poses no fundamental problem to the SSA

4Based on type information inferred at a later point, it would be possible to remove these additional
uses, if the type is known to not be affected by the issues from section 2.3. However, we have found
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vo = undef
.. v1 = ¢(vo, v2) -
while P while P
v =... (v = ve) = ...
use v; use Vs
(a) Ordinary SSA form (b) SSA form with assignments treated as

both uses and definitions

Figure 3.6.: To account for certain semantics of the PHP language, assignments are
treated both as use and definition points. Subfigure (a) shows ordinary SSA
form for a loop body local variable, while (b) illustrates the necessary changes
if assignments are treated as uses.

paradigm, it does significantly change the structure of the SSA graph.

Figure 3.6 (a) shows the control flow graph of a simple while loop, in whose body the
variable vy is used only locally, i.e. v; is defined and used in the same block, and not
anywhere else. In this case (pruned) SSA form does not require placement of ¢-nodes,
because vy is not live-in at any block.

In PHP the situation changes: The assignment of v; is also considered a use of the
variable, as such it is live-in both at the loop header and body. This requires the placement
of a ¢-node in the loop header, as shown in Figure 3.6 (b). The notation (v; — vg) = ...
is used to signify that the assignment uses the old value v; and generates the new value
vo. We refer to such uses as improper uses and commonly need to treat them specially
in analysis passes. In the interest of clarity, figures will continue to treat assignments as
definitions only, unless the distinction is important.

It is common that SSA implementations desugar operations like a += 1 into a = a+ 1,
such that the number of different instructions is reduced and the instruction format is more
uniform. We do not perform such a transformation and instead support SSA instructions
that perform in-place modifications. Using the same notation as for ordinary assignments
(a3 — ag) += 1 performs the equivalent of an ay = a; + 1 operation. The reason why this
approach is chosen, apart from a desire to match the existing instruction set as closely as
possible, is that subtleties of behavior may be lost in such a transformation. For example
the ++$a operation in PHP is not equivalent to $a = $a + 1, because string increment
and string addition behave differently, but there are a number of more subtle discrepancies
as well, particularly when the left-hand-side of the compound assignment is an array offset
or object property.

A few words should be said about the in-memory representation of the SSA graph: The

that even in this case it is useful to retain them in order to maintain the conventionality property
discussed in section 4.7.
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’il = ... il = ...
ifi, 20 ifi1 >0
i’f/ \(ilse 1’1/ \flse
iQ = 7T(7:1) ig = 7T(i1)
use 11 use 11 use 19 use i3
iy = @(iz,i3)
use 11 use 14
(a) Normal SSA form (b) Extended SSA with m-nodes

Figure 3.7.: Motivational example for extended SSA form: (a) shows a CFG where infor-
mation about the value range of i; is only available in certain branches, but
the same variable is used everywhere. (b) solves this by splitting the variable
using m-nodes.

SSA implementation used by PHP generally tries to maintain a very close correspondence
to the original non-SSA program. As such, the SSA information is implemented as an
overlay over the non-SSA instruction stream. Each of the original non-SSA instructions
has (up to) three operands: opl, op2 and result. The SSA overlay then specifies the SSA
variable number that is used or defined by each of the three operands: opl_use, opl_ def,
op2_use, op2 def, result use and result def. It is possible for one operand to make use
of both the use and def fields, e.g. for (a; — a3) =1 opl_use is a; and opl_ def is a,.

¢-nodes are stored separately as a linked list associated with the basic blocks of the
CFG. Information about the variables that particular SSA numbers refer to (such as which
of the non-SSA variables they correspond to) is kept in a separate array. Variables also
store their unique defining instruction and a linked list of use-sites (def-use chain).

3.6.5. Extended SSA form: Pi nodes

One advantage of SSA form is that it makes it relatively easy to lend a degree of (control)
flow-sensitivity to algorithms, a topic which will be discussed more closely in section 4.1.
However, there are cases where the variable splitting performed by SSA construction is
not sufficient to capture some control-sensitive properties.

Such a case is illustrated in Figure 3.7 (a), where a variable 7; is used in three separate
blocks. Ideally, we should be able to make use of the fact that the use in the if-branch
is necessarily non-negative, while the use in the else-branch is always negative. However
both uses refer to the same variable i1, so tracking this information would require returning
to an approach where data-flow properties depend not only on the used variable, but also
on the location of the use.

This problem can be solved by artificially splitting variables using m-nodes, as is shown
in Figure 3.7 (b). A m-node is placed at the start of both branches, thus creating separate
variables i5 and i3, with which the range information can be associated. An additional ¢-
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node needs to be placed at the join point of the two branches, where the range information
associated with 79 and i3 will cancel out.

The concept of m-nodes was adopted from the ABCD array bounds check elimination
algorithm [6], which refers to the resulting SSA form as “extended SSA” or e-SSA. As
the paper provides little information on how to perform m-placement, we will cover this
in more detail in the next section.

At least in our implementation, m-nodes are used not only to split variable ranges, but
also to store information about the associated condition. For this reason we may place
m-nodes even in blocks that already have a ¢-node for the same variable: While there
is no need to split the variable in this case, we still need the m-node to store condition
information.

At present m-nodes are used in value range inference and type inference. m-nodes
are typically placed in pairs, with one node m; in the true-branch of the condition and
another 7y in the false-branch, both carrying complementary range or type constraints.
We recognize the following general classes of conditions and associated constraints:

1. Simple range constraints: A condition v > N will result in two 7 nodes with the
following constraints, where oo denotes a potential integer overflow:

m(v) : [N + 1, 00]
Ty (v) : [-o0, N]

2. Symbolic range constraints: A condition a + N > b+ M will result in:

Here the value range of variable a depends on the value range of variable b and vice
versa. Each branch needs two m-nodes to capture the information for both variables.

3. Type constraints: A condition is_int (v) results in a m-node asserting that the
variable is always an integer, and a 7-node asserting that it may be anything but
an integer.

The concept of m-nodes is very general and can be easily extended to cover additional
conditions, such as isset ($array[’key’]) checks to determine if array keys exist.

Placing m-nodes whenever it is possible may sometimes result in trivially useless -
nodes. For example, if for the CFG from Figure 3.7 the else-block were removed, placing
a m-node at the target of the else-edge (now the last block) would be useless, as this
SSA variable would be immediately used in a ¢-node that annihilates the constraints of a
positive and a negative m-node. However, the m-node might still be useful if the if-block
contained an assignment to i. As we haven’t found any simple heuristic for when m-nodes
will be trivially useless, we prefer always placing them (for live variables).
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7r 7T
(B) ¢ (B
(©)¢ (C)¢ (C)¢

(a) Target has single prede- (b) Target has multiple pre- (c¢) Target has multiple dom-
cessor decessors inated predecessors

Figure 3.8.: Control flow graphs illustrating minimal ¢-placements after the addition of a
m-node, which is logically located on a CFG edge. ¢-placement depends on
number and domination relation of predecessors of the target block B.

3.6.6. Phi placement after pi placement

While for the purposes of presentation (and storage) it is useful to place m-nodes at the
start of basic blocks, they are semantically located along control flow edges. For this
reason placement of ¢-nodes to account for new w-definitions requires special care, as the
standard approaches assume that definitions occur only within basic blocks, rather than
along control flow edges. Figure 3.8 shows a number of control flow graphs with m-nodes
and corresponding minimal ¢-placements. The target of the edge with the m-node is
always block B. The different cases will be discussed in the following.

The simplest case is illustrated in subfigure (a), where the target B only has a single
predecessor. We can treat this instance as if the m-definition were located at the start of
the B block, and thus need to place ¢-nodes on DF*(B).

Subfigure (b) shows a case where the target B has multiple predecessors. Placing ¢’s
only on DF*(B) would be insufficient, as two different definitions of the variable flow into
B. As such, ¢-nodes must be placed on {B} UDF*(B).

However, this rule does not lead to minimal SSA form, as is shown in subfigure (c). In
this case the target B has multiple predecessors, but B dominates all predecessors (not
counting the source of the m-edge), as such it is not necessary to place a ¢-node in B.
Only placing ¢-nodes on DF*(B) would also be non-minimal, as B is part of its own
dominance frontier in this example. The minimal ¢-placement is DF"(DF(B) \ {B}).

To more rigorously show that these intuitive considerations are correct, we may split
an edge (s, t) along which a m-node is located into two edges (s, p) and (p,t), with p being
a newly inserted block containing the m-definition. The problem of ¢-placement then
reduces to finding the iterated dominance frontier DF*(p). As an auxiliary statement, we
claim that p dominates t iff ¢ dominates all preds(t) \ {p}.

Proof: (=) Assume p dominates t. As p # ¢ this implies that p dominates all preds(t).
Thus all paths from the entry block to preds(¢) must contain p. However, as p only has a
single successor t, every such path that does not end in p also contains t. Thus ¢ dominates
all preds(t)\{p}. (<) Assume t dominates all preds(t)\ {p}, i.e. there exists no path from
entry to preds(t) \ {p} that does not contain ¢. However, as ¢ is not the entry block, any
such path must contain at least one preds(t), which can only be p. As such p dominates
preds(t) \ {p}. As p trivially dominates itself, p dominates all preds(¢) and thus p also
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dominates t. O

We now wish to establish a relationship between DF*(p) and DF*(¢). If p does not
dominate (its only successor) ¢, then DF(p) = {t} and DF*(p) = {t} UDF™(¢). The case
where p dominates ¢ is slightly more complicated: Let dom(p) refer to the nodes dominated
by p and sdom(p) to those strictly dominated by p. As domination is transitive and ¢ is
the only successor of p, it holds that dom(p) = dom(t)U{p} and sdom(p) = sdom(t) U{t}.
As such, the dominance frontier of p is given by

DF(p) = {n | Im € preds(n) : m € dom(p) A n ¢ sdom(p)}
={n | Im € preds(n) : (m € dom(t) Vm = p) A (n ¢ sdom(t) An #t)},

where m = p is only possible for n = ¢, which is excluded by the later condition. Thus:

DF(p) = {n | 3m € preds(n) : m € dom(t) A n ¢ sdom(t)} \ {t}
= DF(£) \ {t}
Consequently the iterated dominance frontier is DF(p) = DFY(DF(t) \ {t}). Note that
for the special case where ¢ does not have any predecessors apart from p, DF(¢) cannot

contain ¢, as such this expression reduces to DF " (p) = DF" (). With this we have arrived
at the same sets as previously discussed.
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This chapter describes the various analysis and optimization passes that have been im-
plemented and constitutes the main part of this thesis.

We begin by introducing a general flow-sensitive propagation framework for data-flow
properties and then describe type inference and constant propagation based on it. Next,
dead code elimination and type specialization are introduced. This is followed by a discus-
sion of liveness oracles on SSA form and how to perform copy propagation on conventional
SSA form using them. Subsequently function inlining and propagation of information us-
ing the dominator tree are discussed, both of which are not primary objectives of this
work. Finally, we make a brief note on testing.

4.1. Sparse conditional propagation of data-flow
properties

Many analysis passes are interested in associating some kind of data-flow property with
SSA variables. Examples of possible properties are “variable has constant value C”,
“variable has type T or “variable has same value as other variable v”. This mapping
should be as precise as possible, while being cheap to compute.

For many data-flow properties, this problem can be solved using the sparse conditional
constant propagation (SCCP) algorithm due to Wegman and Zadeck [33]. While this
algorithm is specific to constant propagation, it can be easily extended into a more gen-
eral propagation framework. We will present such a generalization here, based on the
description in the SSA book [9].

The SCCP algorithm has three desirable properties, which set it apart from classical
non-SSA iterative data-flow algorithms. Firstly, it is sparse, meaning that a changing
property of a variable can be directly propagated only to its use sites, rather than requiring
that the flow information for entire basic blocks is recomputed. Secondly, the algorithm
is optimistic, which means that it starts from an optimistic assumption like “all variables
are constant” and may later disprove this assumption. Especially for code with loops, this
leads to better result than starting with a pessimistic assumption. Thirdly, the algorithm
is conditional, i.e. has at least some measure of (control) flow-sensitivity, in that it tracks
which CFG edges are feasible under the current propagation results.

4.1.1. Requirements

The algorithm operates on a bounded lattice (L, C), which means that for every finite
subset S C L there exists a least upper bound ]S (join) and greatest lower bound [1.5
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(meet) over the partial order C. As this also applies to the empty set, there exists a least
element | := | |() and greatest element T :=[](). We will formulate the general algorithm
using meet operations, but for specific applications we may switch to a dual lattice, if the
use of joins is more convenient.

Each SSA variable v is associated with a value Value(v) from this lattice. The im-
portance of the meet operation lies in the handling of ¢-nodes: Ignoring flow-sensitivity,
the value of the ¢ result variable is simply the meet of the values of the ¢-operands.
This is particularly intuitive for a type lattice, where the result type of a ¢-node is the
union of the possible types of the ¢-operands. Here the set union acts as the meet (more
conventionally: join) operator.

Next to the lattice, we require a transfer function eval(/,v) which computes a new
value for variable v defined by instruction I based on the current state of the Value(-)
relation. This function must be monotonic in the values of the SSA variables used by
I. For example, given an instruction I : v = a op b, the function must be monotonic in
Value(a) and Value(b). For a type lattice, this would mean that a more precise knowledge
of the possible types of the input operands of an instruction cannot make the possible
output types, as determined by eval(-), less precise.

Lastly, we require a feasible-successors(b) function, which returns a set of feasible suc-
cessors of basic block b. A successor s of block b is feasible, if it is possible for the control
flow edge (b, s) to be taken, given the current Value(-) relation. For example, if we are
working on a constant propagation lattice and consider a branch on a variable with cur-
rent value true, only one of the successors is feasible. If feasible-successors(b) is defined
to return all successors of b, then the algorithm reduces to a non-conditional variant.

4.1.2. Algorithm

The fundamental idea of the unconditional data-flow propagation framework is simple:
Start with an optimistic assumption of T for all variables and for each instruction either
run eval(-) or use the meet operation if it is a ¢-node. If this lowers the lattice value,
reevaluate all instructions using the value and iterate this until a fixed point is reached.
The conditional framework extends this by also keeping track of which CFG edges are
currently feasible, and ignoring those that aren’t.

The main loop of the algorithm is shown in Listing 1. Two worklists InstrWorklist
and BlockWorklist are used to keep track of instructions and blocks that still need to be
processed. Additionally FeasibleEdges stores all CFG edges that are currently feasible
and FEzecutableBlocks contains blocks that are both executable, i.e. have at least one
incoming feasible edge, and have been processed once already. The latter condition is
only important insofar as it reduces the number of evaluations.

All sets are initialized to be empty, only the entry block is included in the BlockWorklist,
as it is the only block for which we know a priori that it is executable. Value(-) is initialized
to T for all variables that are not implicitly defined in the entry block (i.e. effectively
“undefined” variables). The initialization of the implicit variables is lattice dependent.

The algorithm proceeds to pop elements from the InstrWorklist or BlockWorklist until
both are empty. It does not matter for correctness in which order these worklists are
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Listing 1 Main loop of propagation framework
InstrWorklist < ()
BlockWorklist <— {entry}
FEzecutableBlocks + )
FeasibleEdges < ()
Initialize Value(v) for all SSA variables v

while InstrWorklist # O\ BlockWorklist # () do
while InstrWorklist # () do
I < any element of InstrWorklist
InstrWorklist < InstrWorklist \ {I}
b < basic block that contains I
if b € FrecutableBlocks then
VISITINSTR(])

while BlockWorklist # () do
b < any element of BlockWorklist
BlockWorklist <— BlockWorklist \ {b}
EzecutableBlocks <— ErxecutableBlocks U {b}
for all instructions / in block b do
InstrWorklist < InstrWorklist \ {1}
VISITINSTR(])

processed. If an instruction is popped and the basic block it is contained in is executable,
the instruction is visited. If a block is popped, it is marked as executable and all its
instructions are visited. While this happens the visited instructions should be removed
from the instruction worklist, to avoid needless reevaluations.

The more interesting part of the algorithm is the handling of individual visited instruc-
tions as shown in Listing 2. We distinguish two cases: ¢-instructions and everything
else.

For a ¢-instruction in block b with result variable vy and operands v; from predecessor
blocks p;, we compute the new value of vy as

Value(vo) = [ |{Value(v;) | (p;,b) € FeasibleEdges},

i.e. we take the meet of all Value(v;) for which the edge (p;,b) is feasible. As such, if a
block can be entered along multiple edges, but only some of these edges are known to be
executable, only values flowing along the executable edges are considered. If the newly
computed Value(vy) differs from the previous, all instructions that use vy are added to the
InstrWorklist, so they will be reevaluated with the new value.

For all other instructions we compute the new values for all variables v defined by the
instruction [ using eval(/,v). Once again, if the value of a variable changes, all uses of
the variables are added to the instruction worklist. For both ¢ and non-¢ instructions
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Listing 2 Handling of individual instructions in the propagation framework
procedure VISITINSTR (instruction I)
b < basic block that contains /
if I is vy = ¢(vy,...,v,) then
new Value <~ T
for all ¢-operands v; do
p; < predecessor block for operand v;
if (pi,b) € FeasibleEdges then
new Value < newValue M Value(v;)
if newValue # Value(vy) then

Value(vg) < newValue
InstrWorklist < InstrWorklist U uses(vg)

else
for all variables v defined by I do
newValue < eval(I,v)
if newValue # Value(v) then
Value(v) < newValue
InstrWorklist <— InstrWorklist U uses(v)

if I terminates the basic block then
for all s € feasible-successors(b) do
MARKEDGEFEASIBLE(b, s)

it may be advisable to check whether the current value is L, in which case reevaluation
is not necessary: As we require all lattice transitions to be monotonic, a L value cannot
change to anything else.

Lastly, we need to consider the case where the visited instruction is a branch terminating
the basic block b, in which case the values of its input operands may influence the feasible
successors of the basic block. All edges (b, s) for s € feasible-successors(b) are marked
feasible according to the procedure in Listing 3:

Assuming the edge is not already contained, it is added to the FeasibleEdges set. Then,
if the target block is not yet in EzecutableBlocks, it is added to the BlockWorklist (and
will be added to FEzecutableBlocks when it is popped from the block worklist). If the
target is already marked executable, then only the ¢-instructions in the target block are
revisited. This is necessary because the result value of the ¢-node was computed using
operand values from feasible edges only, so the value from the newly feasible edge has not
been taken into account.

4.1.3. Properties

The height h of a lattice (L,C) is the maximum length of a chain l; T [, C -+ C [,,
such that [; # [; for i # j. As lattice transitions in the propagation framework are
always monotonic, the value of a variable may be lowered at most h — 1 times, causing
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Listing 3 Marking edges as feasible in propagation framework
procedure MARKEDGEFEASIBLE(source block s, target block t)
if (s,t) ¢ FeasibleEdges then
FeasibleEdges < FeasibleEdges U {(s,t)}
if t € ExecutableBlocks then
for all ¢-instructions [ in ¢t do
VISITINSTR(/)

else
BlockWorklist <— BlockWorklist U {t}

the reevaluation of its uses. Additionally, each control flow edge may become feasible at
most once. If we denote the total number of uses of SSA variables as N (edges in the
SSA graph) and the number of edges in the control flow graph as M, the upper bound on
execution time is O((h — 1)N + M).

The algorithm propagates data-flow properties and detects unreachable code (as far as
it can be detected using a given lattice) simultaneously. This is strictly more powerful
than performing unconditional propagation and unreachable code elimination in sequence
any number of times, because lattice values contributed from otherwise unreachable code
paths could inhibit their being detected unreachable.

Not all data-flow problems that can be modeled using classical iterative data-flow anal-
ysis are supported by this propagation framework. In particular it is limited to forward-
directed problems. This is a rather fundamental limitation of operating on SSA form,
as ¢-nodes are placed based on forward control flow. To support backwards-directed
problems a different representation (such as static single information) is necessary. Fur-
thermore analyses such as available expressions cannot be modeled, as propagation to
use-sites of variables is not sufficient for them.

It should further be noted that the algorithm as introduced here only operates on
individual procedures. It is possible to extend it to an inter-procedural variant that is
able to propagate information across call boundaries. We did not attempt to implement
an inter-procedural version due to time constraints, but this would be an obvious avenue
for future improvement.

4.2. Type inference

Many of the optimizations that will be discussed in the following depend, in one way or
another, on the availability of type information for variables. For type specialization the
dependency is obvious, but many other passes also require some type-related knowledge.
In particular, variables that may be references or may be undefined typically have to be
excluded from transformations. Furthermore it may be useful to know whether a variable
can hold a reference-counted value. Types can also help to determine whether or not an
instruction may generate an error.

We implement type inference using the propagation framework described in section
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4.1. As such, the term “type inference” is somewhat misleading in this context, and the
procedure might be more accurately referred to as “type propagation” In particular, this
approach works by starting with known type information (e.g. from variable initializa-
tions), propagating this information to use-sites, and determining which output types are
possible for a set of input types. Notably, this implies that type information only flows
forwards.

Type inference that also admits backwards flowing type information would not be useful
for our purposes, as we do not have the option of restricting types of parameters and other
sources. Even if we can determine that a parameter can only reasonably be an integer,
the function must still be capable of handling other types. One way in which this could
still be applicable, is the use of multi-versioned functions, which check at the start of the
function whether the types of the given parameters coincide with the inferred types, and
then either dispatch to a version based on the inferred type information, or to the original
unconstrained version. However, we did not further pursue such an approach in this work.

The following subsections will describe how the propagation framework is used for type
inference, in particular which lattice is used, how the transfer function is defined and how
feasible successors are determined. We also discuss how m-nodes are employed to improve
the inference quality and lastly introduce an additional type narrowing step used to avoid
union types in certain situations.

4.2.1. Type lattice

The lattice (7,C) used for type inference can, with a few exceptions outlined later, be
approximated as a power set lattice (P(7),C) over a type universe 7. Each element
of the lattice is a set of types S C T, representing the possible types a variable might
take at runtime. To denote such type sets we will use union type notation, i.e. write
int|double instead of {int, double}, and as a result won’t make a strong distinction between
an individual type and a set containing only that type.

The basic types supported by PHP are null, bool, int, double, string, array, object and
resource. All of these types are part of the type universe T, however some of them are
specialized further:

The bool type is subdivided into the pseudo-types true and false. This matches the
underlying implementation (which also treats true and false as separate types, even though
they are not at the language level) and the distinction is useful for flow-sensitive type
inference. As such bool is the same as true|false.

The object type may be further restricted to objects of a specific class: object(Foo)
refers to an object of class Foo, while object(instanceof Foo) also allows subclasses of
Foo.! The ordering between the different object types is given by

object(Foo) T object(instanceof Foo) C object

Unless it is contextually relevant, we will not strongly distinguish between classes and interfaces. As
such object(instanceof Foo) can equally refer to an object implementing interface Foo.
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and further, for a class Bar extending Foo it holds that
object(instanceof Bar) C object(instanceof Foo).

The array type is extended to specify the possible key and value types. Array key types
in PHP can only be int and string.? Value types include all the basic types (without
further subdivision for objects or nested arrays), as well as ref, which is used if the array
may contain references. As an example, for an array that has string keys and numeric
values, we write array|string— int|double].

The ordering for array types can be obtained by considering each variant of “array can
have key of type t” and “array can have value of type t” as separate elements in the type
universe 7', so that the order is again given by the subset relation. We refer to these
elements as array specialization types. It may further be noted that a naked array type,
without additional key/value types, implies that the array is empty. Lastly, if there is at
least one value type, there must also be at least one key type, and vice versa.

In addition to these proper types, we also track a number of other type-like properties
using the same mechanism. Firstly, the already mentioned ref type denotes that a variable
may be a reference. As we do not perform alias analysis to narrow the possible changes
of a reference variable, we require that all lattice values including ref also include a union
of all other proper types (denoted any). As such ref may only occur as any|ref or a
superset.

Secondly, the undef type denotes that a variable may be uninitialized. An undef vari-
able will generally behave like a null variable, however the distinction is important because
undef variables will, under most circumstances, throw a run-time warning when accessed.

The type lattice we use has two main limitations in what it can represent: The first is
that array types are only tracked to one level of nesting, i.e. we can only determine that a
variable is an “array of arrays”, but not that it is an “array of arrays of integers” or similar.
The second is that objects can only reference a single class, so it’s not possible to track
union types like object(Foo|Bar) or intersection types like object(instanceof Food&Bar).
However, both limitations are caused by concerns over the efficiency of the in-memory
representation of types, rather than being fundamental limitations of the approach.

The Value(-) relation of the propagation framework is initialized to (), i.e. the bottom
element of the lattice, for all variables apart from the implicitly defined variables at
the start of the entry block. These are instead initialized to undef in functions and
undef |any|ref for pseudo-main code, to account for the fact that arbitrary variable values
may be inherited from the surrounding scope.

4.2.2. Join operator and transfer function

With the lattice defined, we can consider the remaining components of the propagation
framework, in particular the transfer function eval(I,v). However, before doing so, we

2Arrays in PHP are ordered dictionaries implemented using hashtables. It is possible to mix integer
and string keys in the same array.
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wish to make the behavior of the join operator, which was already implicitly defined
through the lattice order in the previous section, more explicit here.

For non-object types the join operation is simply given by a set union U (with array
specialization types considered to be distinct elements). For object types further consid-
eration is needed: The join between two object types is given by

object(A) if A=DB
object(A) U object(B) = < object(instanceof LCA,(A, B)) if LCA,(A, B) exists,
object otherwise

where LCA, (A, B) refers to the lowest common unique ancestor of A and B in the inheri-
tance graph. The emphasis on uniqueness is important here, because, while PHP does not
support multiple inheritance, it does support the implementation of multiple interfaces.
As such multiple interfaces may be lowest common ancestors (LCAs) of two classes. In
such cases it would not be legal to choose an arbitrary LCA, as this would make the join
operation non-associative. Instead the computation of the LCA needs to be iterated (by
computing the LCAs of the LCAs etc.) until either there is a unique LCA or no common
ancestor exists.®> The join of object types where at least one operand has an instanceof
qualifier works the same way, with the difference that the result type will also have the
instanceof qualifier.

The transfer function eval(l,v) returns the new lattice value for variable v defined
by instruction I based on the current state of the variable-to-lattice mapping Value(-).
This function needs to be defined for all instructions that may define variables, although
a pessimistic default implementation of returning any|ref may be used for cases where
more specific information is not available or worthwhile. In the following, we will discuss
the implementation of eval(/,v) for one specific example, namely the ADD instruction.

First, we define the effective type of an operand as the type with undef replaced by
null, and any specialized information about arrays or objects removed. Given this, the
result type of an ADD instruction may be determined as follows:

1. Let t; be the effective type of the first operand, and t, the effective type of the
second operand. Further initialize the result type ¢, to be empty.

2. If t; and t5 both contain array, add array and the union of the array specialization
types of both operands to t,.

3. Remove the array type from both ¢; and t,. If this leaves either t; or t5 empty,
return.

4. If t; or ty contain double, add double to t,.

5. Remove the double type from both t; and ¢5. If this leaves either ¢; or ¢, empty,
return.

3In practice we forgo this relatively complex iterated LCA search, and instead compute the LCA over
the class hierarchy only. Support for union object types would resolve this issue as well.
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6. If ¢, and ty are subtypes of null|bool|int and the value range of the result variable
does not admit over- or underflow, then add int to t,.

7. Otherwise add int|double to t,.

Construction of the transfer function such that it is both always monotonic and gen-
erates the smallest possible set of result types turns out to be less trivial than it may
initially appear, as such we will discuss some of the subtleties involved in this particular
example:

Firstly, it should be noted that the result type only contains array if both operands
may be array. A particularly interesting case occurs if the type of one operand is exactly
array, while the other does not contain array. In this case the final result type will be
empty.

This is a valid result and indicates that this instruction will always throw, thus never
returning a proper value that might have a type. All instructions in the basic block
following it will be unreachable, and if all transfer functions are minimal, the empty type
will be propagated through using instructions. Empty result types could technically be
used to eliminate additional unreachable code, but applicable cases are unlikely to occur
in practice, so we did not further pursue this.

Secondly, the result type contains double if either of the operands may be double. The
reason is that addition with a double will always promote the other operand to double
and consequently yield a double result. If one the operands is ezactly double (checked in
step 5), then the result type can only be double, otherwise we need to consider further.

Lastly, the types null, bool and int behave like integers under addition. If value range
inference determined that the result cannot overflow, the result type will be int. Other-
wise, if either an overflow to double is possible, or a different type like a string (which may
behave as either an integer or double) is involved, then both int and double are possible
results.

4.2.3. Flow-sensitivity: Feasible successors

Because branches on the null type, as well as the true and false pseudo-types, can be
determined statically, it is possible to make use of the feasible successor mechanism of the
propagation framework to lend a degree of flow-sensitivity to the type inference algorithm.

For an ordinary branch with targets b; (true) and b, (false) acting on a variable with
effective type t, the feasible successors are given by:

0 ift =0

{b:} if t = true

{bs} if t C null|false
{b1,bs} otherwise

feasible-successors(+) =

Similar static decisions are also possible for some other branch types, e.g. for null-coalesce
branches it may be possible to determine the branch target based on whether the effective
type contains null.
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Under which circumstances can we expect to successfully determine a branch target
with type information only? An obvious case are boolean constants occurring directly in
the code or being introduced by function inlining. However, even if precise values are not
known, the outcome of certain operations may be determined using type information, for
example:

1. Checks like is_int (v) may only be true if Value(v) contains int and only be false
if Value(v) contains types other than int. (Both may apply, in which case we have
no knowledge.)

2. Type-strict comparisons v; === vy may only be true if the types of both operands
have a non-empty intersection.

3. Instanceof operations v instanceof Foo for a known Foo may only be true if
Value(v) 3 object(Foo).

4. The result of a logical and v; && v, is false if either operand can only be null or
false.

At least in theory, even if a particular case could also be handled by constant propaga-
tion, it may still be advantageous to already handle it during inference, as types added by
the code segments thus marked unreachable do not have to be considered. The interaction
of type inference and constant propagation will be more closely discussed in section 4.3.4.

4.2.4. Flow-sensitivity: Pi type constraints

Next to the feasible successors mechanism of the propagation framework, another means
by which we may improve flow-sensitivity is given by the use of m-nodes, which were first
introduced in section 3.6.5. We will now discuss in more detail how m-nodes integrate
with type inference.

As a reminder, m-nodes are inserted along control-flow edges that are guarded by con-
ditionals checking some type-related property, such as is_int ($var) or $var === null.
The purpose of the m-node is to split the SSA variable and associate the property implied
by the conditional with it.

For a node v; = m(vg) with a type constraint ¢, the result type of v; is given by
constr(Value(vy), ), where the constr(-) function is similar to, but not identical with, the
meet operation N induced by the C relation as defined previously. For simple types the
constraint function is indeed given by a set intersection, however specialized object types
require additional handling. We define:

constr(object(instanceof A), object(instanceof B)) =

object(instanceof A) if A instanceof B
object(instanceof B) if B instanceof A
1) if A and B are classes

object(instanceof A) otherwise
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The first two cases are clear: If one class is a subclass of the other, we use the more
specific one (this includes the case where both are equal). However if A and B are not
in an inheritance relation, we encounter a problem: As PHP does not support multiple
inheritance, this condition is not satisfiable if A and B are classes, in which case the
result is empty. However PHP does support implementing multiple interfaces, so that
two unrelated interfaces A and B may still both be implemented by one class.

There are two issues with this: First, there may be more than one class implementing
the two interfaces. Second, not all classes are known at compile-time, i.e. there may be no
knowledge of a class implementing both interfaces, even though it will exist at runtime.
In either case, the meet operation M induced by the C relation would return (), which does
not constitute a correct analysis result.

We resolve this issue by simply choosing the left-hand type object(instanceof A) as
the result type. The left-hand type is used on the principle that SSA form with m-nodes
should never yield a worse result than SSA without m-nodes. For the case where the
left-hand object type specifies an ezact type, the constr(-) function simplifies to:

object(A) if A instanceof B

constr(object(A), object(instanceof B)) = {@ -
otherwise

4.2.5. Type narrowing

As already discussed in the introduction, our approach to type inference is purely forward
directed: The type of a variable will never be affected by the operations it is used in. We
have justified this using the circumstance that we do not have the option of constraining
the type of parameters or other sources. However, it may be possible to change the type
of a constant variable initialization, as this is not an externally provided value. In the
following we will describe a mechanism we refer to as type narrowing which does precisely
this for a specific case.

To motivate this additional mechanism, consider the control flow graph in Figure 4.1,
which is a small excerpt of a Mandelbrot set computation. The code first initializes the
variables z; and Z; to integer zero. However, the new variables z3 and Z3 computed by
the while loop will always be doubles (assuming the variables 7; and r; are doubles). As
a result, the variables z and Z, will have a union type of int|double.

This union type is problematic, as it precludes the use of type specialized instructions
down the line. For a JIT compiler the situation is even worse, as the union type will
prevent unboxing of the value. This problem only exists because the programmer did not
initialize the variables with the correct type (using an integer zero instead of a double
zero). Our goal is to detect such cases and promote the initialization to use doubles, if
doing so causes no change to observable results.

Promoting an initializer to double means that computations using this value will use
double arithmetic instead of integer arithmetic, which may lead to a loss in precision. As
such, changing the type of the initializer is only possible if we can prove that earlier use
of doubles has no impact on results.
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2’1:0
Z1:0

(while P -
Z2=¢(Z17Z3)

Zy = (21, Zs)

23 = 2ok 29 — Lo x Lo+ 11
23:2*22*224-2.1

Figure 4.1.: Excerpt from a Mandelbrot function. The variables z; and Z; are initialized
to integer zero, while the variables z3 and Z3 are known to be double (if r
and i; are doubles). As a result zo and Z, have a union type int|double. By
promoting the z; and Z; initialization to double, this can be avoided.

Type narrowing is performed as follows: For each assignment of an integer literal to a
non-reference variable, we use the CANPROMOTE function shown in Listing 4 to determine
if the assignment may be promoted to double. As a side-effect, this function also computes
the set of variables those type information may change due to the promotion (visited). The
type information for these variables is reset to be empty and the assignment instruction
is added back to the type inference instruction worklist. Once all instructions have been
processed we rerun type inference (if at least one promotion occurred).

The CANPROMOTE function recursively? checks that a double promotion will not change
the result of instructions using the variable. This is essentially done by passing the integer
value of the currently considered variable along and checking whether computations still
yield the same result if it is replaced with a double value. For a use of the variable in a
non-¢ instruction the function proceeds roughly as follows:

1. Ignore the use if it improper, i.e. if the use occurs as the target operand of an
assignment, as described in section 3.6.4.

2. If the instruction is not narrowable, promotion cannot occur. By narrowable we
refer to arithmetic instructions which return a double result if one operand is a
double. For example this includes the addition, subtraction, multiplication, division
and power-raising operations, but does not include the modulus instruction, which
in PHP always produces integers.

3. If the result type of the instruction is exactly double, the variable will be cast to
double in any case. As such, promotion is allowed (as long as other uses do not
disagree).

4. If all the operands of the instruction are known, because they are either the currently
considered variable or constants, we can evaluate the instruction using the original

4An iterative formulation using a worklist is of course also possible. We present a recursive version here
for simplicity.
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Listing 4 Main component of type narrowing algorithm

function CANPROMOTE(variable var, original value value)
> visited is a set shared between invocations and initialized to ()
if var € visited then
return true
visited < visited U {var}

for all I € uses(var) do
res <— result variable of
if I is ¢-node then
if ~CANPROMOTE(res, value) then
return false
else if use of var in [ is improper then
continue
else if [ is not narrowable then
return false
else if result type of [ is exactly double then
continue
else if value = CAST then
return false
else if operands of I are known then
1wal < result of computation on original values
dval < result of computation on doubles
if double(ival) # dval then
return false
if ~CANPROMOTE(res, ival) then
return false
else if [ is effective cast then
if ~CANPROMOTE(res, CAST) then
return false
else
return false
return true

operands and using doubles, and check whether the result is the same (apart from
type).

5. If not all operands are known, it may still be possible to show that the eventual result
is the same, if the instruction only acts as an effective double cast. For example
1.0 * $var is the same as (double) $var. If the instruction that consumes this
result would cast the operand to double anyway, performing the cast earlier will not
change the result.

6. If either of the last two cases apply, we recursively check whether the result variable
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can be promoted, passing either the result of the calculation as the new value or
using a special CAST placeholder.

Applying this to the example from Figure 4.1, we start with the initialization of z; to
integer zero. z; is used in a ¢-node producing z5. We recursively check zy, which is used
in 29 * 29, with result zero in both integer and double arithmetic. This result is then used
in the expression result — Zs x Zy. An expression of type 0.0 — v acts as an effective cast,
because in PHP it holds that (double) (0-$v) and 0.0-(double)$v are always bitwise
identical.® This result in turn is used in result 4+, with r; being a double. As this would
cast the result operand to double, the previous effective cast is allowed.

Similarly, starting at Z; = 0, this variable is used in a ¢-node with result Z,. This
variable in turn is used in an expression of type var x Zy. As Zs is zero at this point, the
result will always be zero independently of the value of var. This result is then used in
result +1i1, where i; is a double. As the results are consistent until this point and i; would
force a double cast, an earlier promotion is allowed here as well.

The type narrowing procedure uses an ad-hoc approach to solve a specific problem,
lacking any particular generality or elegance. The main reason why it is effective is that
mis-typed initializers tend to use values like zero or one, which have special properties
we can exploit. For our particular example an alternative solution would be to start at
a narrowable instruction returning a double and walk the SSA graph backwards to the
variable initializations and require that all of them be promotable (here z; and Z;). This
has the advantage that we would be able to simply perform all computations using the
value of both z; and Z; without resorting to any particular “tricks”. On the other hand
this would not cover cases where only one variable can be promoted.

4.3. Constant propagation

Constant propagation is an analysis, which aims to detect variables that are constant
for all possible executions of a program. This allows the replacement of uses of con-
stant variables with constant instruction operands, and the subsequent elimination of the
generating instructions, thus yielding programs that are smaller and faster.

On SSA form, this problem can be solved efficiently using the sparse conditional con-
stant propagation (SCCP) algorithm due to Wegman and Zadeck [33]. We will rephrase
this algorithm in terms of the general propagation framework introduced in section 4.1
(which itself is just a generalization of the SCCP algorithm).

In the following subsections, we will first introduce the constant propagation lattice
and define an instance of the propagation framework based on it. Then we will discuss
a number of PHP specific issues and lastly consider how constant propagation may be
combined with type inference.

5This fact is non-trivial and depends on the specific behavior of subtraction in PHP. In particular
0-PHP_INT_MIN is specified to result in 0.0-(double)PHP_INT_MIN. The equality would not hold in
C.
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//\\\

C; Gy
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Figure 4.2.: Hasse diagram for the constant propagation lattice.

4.3.1. Constant propagation lattice

The constant propagation lattice (L, ) shown in Figure 4.2, consists of three kinds of
elements: A top element T, a bottom element | and an infinite number of constant
elements C; in between. While it holds that L T C; C T for any Cj, the constant
elements C; have no ordering among themselves, i.e. for any ¢ # j both C; £ C; and
C; £ C;. The meet operation I on this lattice is thus given by:

TNili=1 VIeL
1rnli=1 Vliel
Cine;=¢; ifi=j
C;NCj=1 ifi#j

When associated with an SSA variable, the different lattice values are to be interpreted
as follows: The T element represents an underdefined variable, which may or may not
be constant. We do not yet know a specific constant value this variable may have, and
neither do we know that it is non-constant. Conversely, the | element represents an
overdefined variable, which cannot be proven to be constant, either because it depends
on an external source or because we have observed that it may take multiple distinct
constant values. The C; values of course represent a variable that is constant with value
C;, at least according to the current state of the algorithm.

The idea behind this lattice is that variables will be optimistically initialized to the T
state, may then lower to a constant value C; and then lower again to L, if it turns out
that this is not the only constant value the variable may take. After the propagation
framework has reached a fixed point, all variables (with reachable definitions) will have
either a C; or L value. Uses of variables in the former category may then be replaced
with the constant value.

4.3.2. Transfer function and feasible successors

The transfer function eval(/, v) of the propagation framework returns the new lattice value
for variable v defined by instruction I based on the current state of the Value(-) relation.
For constant propagation this function essentially performs a compile-time evaluation of
I, with special semantics for the T and L elements. For simplicity, let us consider an
instruction of the form I : v = vy op vy and let l; = Value(vq) and Iy = Value(vy). Then
eval(/,v) behaves as follows:
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1. If either [; or Iy is L, or if the instruction cannot be statically evaluated in general,
then the result is L.

2. Otherwise, if either [y or Iy is T, the result is T.

3. Otherwise both [; and [, must be known constants. If the operation can be evaluated
for these particular constants, let that be the result.

4. Otherwise the result is L.

Intuitively this means that if one operand is non-constant, the result is also non-
constant. Similarly if we don’t know whether one operand is constant, we also don’t
know whether the result is constant.

For some specific operations it may be possible to determine a constant result even if
one of the operands is not known. A typical example is the expression v*0, which always
evaluates to 0, independently of the value of v. If one wishes to exploit this, care must
be taken when defining the interaction with T and L to ensure the transfer function is
still monotonic. If one defines that [ « 0 = 0 for any [ € L, then one should also chose
that T x L = T rather than L. Otherwise the function becomes non-monotonic if the T
operand transitions to 0.

The last component of the propagation framework we need to define is the edge feasibil-
ity function. For a conditional branch on variable v we determine the feasible successors
as follows: If Value(v) = L all successors are feasible. If Value(v) = T no successors are
feasible. Otherwise Value(v) is a constant and there will be one feasible successor.

4.3.3. Specifics of constant propagation in PHP

The Value(-) relation is initialized to T for all variables apart from the implicit variables
at the start of the entry block, which are initialized to L instead. Alternatively it would
be possible to initialize the latter to constant null, as undefined variables evaluate to
the value null upon use. However, access to undefined variables additionally throws a
run-time warning, so that it would not be possible to actually substitute this value at the
use-sites, making this initialization of little use.

It should also be noted that variables, which type-inference has determined to be poten-
tial references, are not initialized to L as might be expected: If a variable is a reference its
value might change unexpectedly, e.g. through a modification in an error handler. As such
propagating a constant assigned to a reference is generally not safe. However, initializing
potential reference variables to L at the start of the analysis is overly pessimistic, as is
illustrated in Figure 4.3. In this example type inference will determine by and b3 to be
potential references. However constant propagation shows that the block containing the
by reference assignment is not reachable, so that b3 = b; = 1 would be a valid analysis
result.%

Instead we initialize potential references to T, like all other variables, and rely on the
fact that any instruction producing a reference will yield a | value for the corresponding

6As we have to assume that any call to an unknown function turns its arguments into references, this
situation is more common than one might expect.
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a; = 0
bl —
if aq

by = ref
b3 = ¢(b17 b?)
use bs

Figure 4.3.: Example CFG where initialization of potential reference variables to L pro-
duces suboptimal results: The branch containing the reference assignment to
by is shown to be unreachable during constant propagation.

variable. However this requires additional handling for ordinary assignments of the form
(v — vg) = w (where v; denotes the improper use of the old value and v, the new value):
Normally a value of L for v; may be ignored, as it has no bearing on the new value of v,.
However, if v; is marked as a potential reference, we cannot distinguish whether L refers
to a non-constant value or a reference, so we pessimistically assume it is a reference and
set vy to L as well.”

With the issue of references covered, we will now discuss a few PHP specific issues
relating to the implementation of the transfer function. First, it should be noted that
many basic operations in PHP will generate either a run-time warning or exception when
used with certain operand types or values. For a semantically identical transformation
these errors need to be preserved. For the case of run-time warnings, it would be possible
to still compute the result of the operation and use it as the input to dependent operations.
However, this would complicate further handling, as the implementation would have to
remember that this value was generated along with a run-time warning and as such
its generating instruction may not be eliminated. As it is unlikely that code generates
run-time warnings in the course of ordinary execution, we did not consider this to be
worthwhile and instead return a | value for erroring operations.

The second potential issue to consider are the types of values that may participate in
constant propagation in PHP. In a classical setting, constant propagation is performed on
booleans, integers and doubles, or similar simple scalar types. However, in PHP constant
propagation may also be performed on more complex types like strings and arrays. This
poses a problem for the complexity of the algorithm: While the transfer function can still
only be evaluated a linear (in the size of the SSA graph) number of times, we can no
longer assume evaluations of the transfer function to be cheap.

A particular striking example of this issue is the instruction sequence generated for
the construction of an array. It consists of an INIT_ARRAY instruction followed by one
ADD_ARRAY_ELEMENT instruction for each element of the array. In non-SSA form these

" Alternatively, it is also possible to extend the lattice by introducing a L, T L value specifically indi-
cating a reference. As discussed in section 4.3.4, combining type inference and constant propagation
also solves this.
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instructions operate on a shared result variable that is incrementally modified. In SSA
form however, each of the instructions in this chain will produce a new SSA variable.
When applying the constant propagation algorithm to this case (assuming all elements
are known) a naive implementation will assign separate arrays with an increasing number
of elements to each variable. For the construction of an array with N elements, this
degrades complexity to O(N?) both in terms of execution time and memory usage.

This particular case can be resolved by exploiting the structure of the chain: Each
of the intermediate SSA variables is used only in the subsequent ADD_ARRAY ELEMENT
instruction, which does not admit constant substitution. As such, we can safely share one
array among all instructions (or use some other dummy value in all but the most recent
instruction), as long as we avoid reevaluations with unchanged operands. However, this
solution is not generally applicable. For example, if the array is constructed through
manual insertions rather than the use of array literal syntax, the guarantee of a single
use does not exist and thus it is not possible to share the value. In this case we may only
limit the maximum size of the array, and switch to a L result if it is exceeded.

When describing the constant propagation algorithm, it was mentioned that for some
operations like v %0 it is possible to determine the result of the operation even if the value
of v is not known (i.e. T or L). While in principle true, such relations are typically only
very narrowly applicable in PHP. For example, the result of $var * 0 will be double zero
instead of integer zero if $var is a double. Similarly, the result of $var * 0.0 is not
always 0.0, but may also be -0.0 or NaN for some values of $var. Furthermore, if $var is
a string the operation might generate a warning or, if it is an array, might even generate
an exception. As such, exploiting multiplication by zero and similar relations is only safe
if type information is taken into account.

After the constant propagation algorithm has finished executing, we make use of the
results by replacing uses of constant variables with their value. A problem encountered
here is that many PHP instructions have restrictions on the use of constant operands.
Some instructions do not support constant operands outright, while others require specific
types or adjusted values. For this reason, even if the value of variable is known, we may
not always make use of it.

After constant operands have been replaced, we perform a simple dead code elimination
(DCE) pass, which walks instructions in postorder and removes them if they generate tem-
poraries which are both unused and have a known value. If they generate non-temporary
variables instead, the instruction is replaced by a constant assignment, thus deferring
actual elimination to the main DCE pass.

The motivation for implementing a primitive DCE pass used only for constant propa-
gation is twofold: Firstly, the main DCE pass uses type information to determine whether
an instruction may generate an error and thus cannot be eliminated. As such, it would
not be able to eliminate instructions that might error for the inferred types, but do not
generate an error for the specific propagated constant operands. Secondly, for temporaries
the using instruction is also responsible for destroying the temporary. If the use of the
temporary is replaced by a constant but the generating instruction not removed, this may
result in a memory leak. As we wish constant propagation to be usable independently of
the main DCE pass, this primitive DCE ensures that no leaks occur.
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4.3.4. Combining type inference and constant propagation

It is a common observation that combining two separate analysis passes may yield better
results than sequentially running the passes an arbitrary number of times, e.g. the sparse
conditional constant propagation algorithm detects more unreachable code and constant
variables than running unreachable code elimination and non-conditional constant prop-
agation in sequence (any number of times).

The common propagation framework makes it very easy to combine analysis passes
based on it: For two bounded lattices (L, C) and (Lg, Co) and transfer functions eval; (+)
and evaly(-), as well as feasibility functions feasible-successors; () and feasible-successorss(+),
we define a new bounded lattice (L, C) with L = Ly X Ly and

(ll,lg) C (lll,l;) = ll [ lll A lg [ 1,2 \V/ll € Ll,lg € LQ,
as well as

eval(l,v) := (evaly(I,v),evaly(1,v))
feasible-successors(b) := feasible-successors; (b) N feasible-successorsy(b),

in order to construct a new instance of the propagation framework that subsumes both
passes. Both sub-instances will run in parallel, but mostly independently of each other.
The only interaction occurs in the feasible-successors(-) function, which now only considers
successors that are feasible under both instances. For this reason running both instances
in parallel in this way is never worse than running them sequentially, but may be better,
as additional control flow paths are excluded.

For the parallel execution of type inference and constant propagation in particular there
are two ways in which a better result may be achieved: The first is the aforementioned
possibility of reducing the number of feasible successors. In the majority of cases the
feasible successors as determined by type inference are a superset of those detected by
constant propagation, as type inference essentially performs a very limited form of con-
stant propagation on null and booleans only. However, as described in section 4.2.3, there
is a small number of cases where we can determine the outcome of branches based on
type-inference information, but not using constant propagation.

The second is given by the fact that in our formulation type inference and constant
propagation are not fully independent. Namely constant propagation uses information on
potential reference variables as determined by type inference when evaluating assignment
instructions. As discussed in the previous section, initializing potential reference variables
to L is overly pessimistic, because all reference-producing paths may be found to be
unreachable during constant propagation. However a pessimistic assumption still had to
be made for assignments. Running both passes in parallel resolves this problem, because
type inference will not take the code-paths determined to be unreachable by constant
propagation into account either.

In practice we have found that these benefits do not materialize. While it is possible to
construct codes that derive benefit from this combination, we did not find this to occur
in practice. However, running both passes in parallel does avoid the need to rerun type
inference after constant propagation to receive the most accurate results.
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Listing 5 Dead code elimination algorithm
InstrWorklist < ()
Live < ()
for all instructions I do
if I has side effects then
Live < Live U {I}
InstrWorklist <— InstrWorklist U {I}

while InstrWorklist # () do
I < any element of InstrWorklist
InstrWorklist < InstrWorklist \ {1}
for all instructions I’ that define operands of I do
if I' ¢ Live then
Live < Live U {I'}
InstrWorklist < InstrWorklist U {I'}

4.4. Dead code elimination

Dead code is commonly left behind as the result of other optimizations, such as constant
propagation. There are two broad classes of dead code: The first is unreachable code,
which refers to instructions that can never be reached by control flow. Unreachable
code is already detected and eliminated by the conditional propagation passes (such as
conditional constant propagation) discussed in the previous sections. The second type
of dead code, with which we are concerned here, refers to instructions which have no
side-effects and those results are not used, or only used by other dead instructions. In the
following we will first introduce the general DCE algorithm and then discuss some PHP
specific concerns.

4.4.1. Algorithm

Dead code elimination on SSA form can be performed using a simple worklist-driven
algorithm, as shown in Listing 5. It proceeds from an optimistic assumption that only
instructions that have side-effects are live and all other instructions are dead. It then prop-
agates the liveness information backwards: If an instruction is live, then any instruction
that generates one of its operands must also be live.

In this basic formulation it is required to consider all conditional branches to be live,
i.e. have a side-effect. This may yield suboptimal results, in that all code guarded by
the conditional branch may be found to be dead by this algorithm, while the now useless
branch will still be considered live. There exists an extension of this algorithm due to
Cytron et al. [17], which improves handling of conditional branches by making use of
control dependence properties:

Without formal definition, a CFG node m is said to be control dependent on a node n,
if there is an edge from n that definitely causes m to be executed, and there also exists
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a path from n that does not contain m. Cytron et al. have shown that this condition
is equivalent to n being part of the reverse dominance frontier (RDF) of m, where the
reserve dominance frontier refers to the dominance frontier on the reversed control flow
graph (dominance on the reversed CFG is called postdominance on the ordinary CFG).

Cytron’s dead code elimination algorithm extends the naive variant by initially as-
suming that conditional branches are dead, and adding an additional step when handling
newly live instructions: Conditional branches terminating blocks in the reverse dominance
frontier of the block containing the newly live instruction must also be marked live.

In our implementation, we chose not to use the extension by Cytron, as we estimate
the number of cases where this is applicable to be relatively low, while the computation
of a postdominator tree and the reverse dominance frontiers is both expensive and imple-
mentationally non-trivial. The reason for the latter is that the reverse CFG, at least in
our representation, has some inconvenient properties: Not only may it have multiple exit
nodes, it may also, for the case of infinite loops, have none at all.®

4.4.2. PHP specific considerations

As usual, there are number of PHP specific considerations that need to be taken into
account when applying the DCE algorithm. Firstly, we should define more precisely what
we mean by instructions having side-effects. As already discussed, we consider branches
(both conditional and unconditional) to have a side-effect (of branching). It should also
be clear that instructions such as ECHO which perform I/O operations, as well as function
calls (at least without more specific knowledge) are considered to have a side-effect.

However, in addition to these, we also need to consider instructions that may potentially
throw a run-time warning or an exception as having side-effects. This is problematic
because in PHP nearly every instruction can generate an error, if only in an obscure
circumstance. Out of approximately two hundred VM instructions, less than ten have no
error conditions at all. To reduce the number of liveness roots, we use type information
to determine whether the instruction may error for a particular combination of operand
types.

For this classification there is one particular error condition that (thankfully) does not
have to be taken into account: PHP’s instruction set defines that an instruction using
a VM temporary is also responsible for releasing it. As this may directly or indirectly
trigger the destruction of an object with a destructor, this operation may error. However,
if we eliminate the instruction, we will still need to destroy its operands, so this side-effect
is preserved and we do not have to consider it here.

Another case that requires special consideration are assignment operations of the form
(v = vg) = w. If vy is a potential reference, the assignment may have a side-effect. How-
ever there are two further cases where eliminating this instruction may not preserve exact
semantics: If v; may have a destructor, then removing this instruction might cause the
destructor to run later. Similarly, if w may have a destructor, eliminating the instruction

8In this case it is still possible to compute a complete postdominator tree, by considering the backedge
targets of infinite loops as additional exit nodes.
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may cause the destructor to run earlier.

Assignment operations also pose an additional problem: The use of vy in (v; = v9) = w
is improper, as such we do not consider it as a use for the purposes of DCE. This means
that if we mark the assignment as live we will not mark the instruction generating v; as
live as well. While this approach is acceptable if v; is generated by an ordinary instruction,
it also implies that ¢-nodes those result is only used improperly will be considered dead
on termination of the algorithm. This is not acceptable, as the improper uses are still
uses and removing the ¢-nodes would violate SSA properties.

To avoid this, the actual elimination of dead instructions is performed in two phases:
First, we remove all dead non-¢ instructions. Then we mark all ¢-instructions that
are used improperly as live and propagate this information backwards to the ¢-sources
using the same worklist-based approach. Only after this step will dead ¢-instructions be
removed.

Dead code elimination, as well as other SSA transformations, often leave behind a large
number of ¢-nodes that are not formally dead, but still unnecessary. These trivial ¢p-nodes
take the form vy = ¢(vy, v1), or vg = ¢(vg, v1), i.e. all source variables of the ¢-node are the
same, or are equal to the result variable. Such ¢-nodes may be eliminated by renaming
uses of the variable vy to the common source vy.

4.5. Type specialization

Many instructions of the PHP virtual machine need to implement different behavior de-
pending on the type of the operands. This is usually done using a fast-path/slow-path
split, where the fast-path handles the one or two most likely types for the operation, and
falls back to the slow-path which, next to a type generic implementation of the operation,
also handles unlikely conditions like undefined or referenced variables.

While this split somewhat improves the situation, even the most basic operations still
require multiple type checks. For example an ADD on two integers requires two type
checks, while an ADD on two doubles needs three type checks (one more because integers
are checked first). Additionally, the existence of a slow-path with function calls leads to
the emission of stack management instructions in the prologue and epilogue of the opcode
handler.

To avoid this overhead, we can specialize generic instructions to type-specific ones
based on the type information determined by type inference. For the ADD instruction
for example, one may introduce ADD_INT and ADD_DOUBLE operations which only accept
integer/double operands. Additionally taking into account value range inference on the
result, one can further specialize ADD_INT to ADD_INT_NO_OVERFLOW, which removes not
only the type checks, but also the addition overflow branch.

Next to the specialization of arithmetic instructions, type information can also be used
to elide certain instructions entirely. For example a CAST instruction may be removed if
the type of the input operand already matches the type that it is being cast to. Similarly
VERIFY RETURN_TYPE may be elided if we have inferred that the return type is always
correct.
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Instead of specializing for specific types, we may also exploit certain common properties.
In particular the types null, bool, int and double do not use reference counting. This means
that an assignment to a variable that may only hold one of these types does not need to
destroy the old value, it can be directly overwritten instead. This allows for a number of
related optimizations we collectively refer to as assignment contraction:

First, we may convert ASSIGN $var, val instructions into $var = QM_ASSIGN val
instructions. The difference between these two operations is that the former will destroy
the old value of $var, as well as handle other conditions like assignments to references,
while the latter will simply overwrite the value of $var directly.”

More importantly, we may note that code like $a = $b + $c will be compiled into a
sequence of two instructions: First T = ADD $b, $c will write the result of the addition
in a temporary T, and then ASSIGN $a, T will copy this result into the $a variable. The
operation is split into these two parts to avoid repeating the relatively involved logic of
non-temporary assignments in every instruction. If we know that before this operation
$a holds a value which does not use reference counting, these two instructions may be
contracted into $a = ADD $b, $c.

When performing this transformation, there is one caveat regarding exception safety
that needs to be taken into account: The VM specifies that a throwing instruction is
responsible for making sure its own result variable is released. Usually this is not a
problem, as instructions will not write a result in the first place if an exception is thrown.
In some cases however, most notably for call instructions, it is possible that the result
variable is first written and later destroyed due to a thrown exception. Applying the
transformation for such instructions might thus lead to a double free.

The last assignment related optimization we can apply is to convert instructions of type
ASSIGN _ADD $a, $binto $a = ADD $a, $bif $ais not reference counted. Once again this
avoids a number of checks related to in-place modification of variables. Additionally this
transformation enables the arithmetic type specialization that was discussed previously
to apply.

Finally, when performing operations on objects for which a class type has been inferred,
it may be possible to specialize instructions based on it: Object properties are stored at
specific offsets from the start of the object. Usually, accessing a property requires looking
up the property offset in a runtime cache. However, if we can statically determine the
object class type, this offset can be baked into the instruction as an immediate. This does
not require knowledge of the exact object type (instanceof constraints are allowed), as
the offset remain valid for subclasses.

4.6. SSA liveness checks

For the implementation of copy propagation on conventional SSA form, we will need to
determine whether an SSA variable is live at a certain program point. Unlike many other

9The QM_ASSIGN instruction is designed for use with VM temporaries which can always be assumed to
be unused when written to. The name originally derives from its use in the implementation of the
ternary (QuestionMark) operator.
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data-flow problems, liveness analysis does not particularly lend itself to SSA form, due
to its backwards directed nature. However, it is still possible to exploit certain structural
properties of SSA form and the CFG when determining liveness of variables. For this
purpose, we use the fast liveness checking algorithm by Boissinot et al. [8], an overview
of which will be provided in the following.

It should be noted that unlike classical iterative liveness analysis, which provides sets
of variables that are live-in/out at a certain block, this algorithm only provides an oracle
which can answer queries of the form “Is variable v live-in/out at program point p?”, but
does not compute actual sets of live variables. The algorithm works by precomputing
certain information about the structure of the control flow graph, which can then be
used to answer such liveness queries efficiently. Notably this implies that the algorithm
is robust against changes of the SSA graph: As long as the control flow graph does not
change, the precomputed information remains valid.

In the following, we refer to the unique block in which the SSA variable v is defined
as D, and the blocks where v is used as uses(v). In this context a “using” block does
not simply refer to a block b which contains an instruction that uses the variable v as an
operand. This is only the case for uses in ordinary instructions, but does not apply to
¢-nodes: For a ¢-node in block b with v as its ¢-th operand, the use is semantically not
located in b itself, but rather occurs along the control flow edge (p;,b), where p; refers
to the predecessor associated with the i-th operand. As the block/edge distinction is not
relevant here, we locate the use in the block p; instead.

An SSA variable v may now be defined to be live-in at a certain block b, iff there exists
a path from b to a use of v, that does not contain the definition D,. As has already been
noted earlier, under strict SSA form the definition D, dominates any use of v. Using this
property, we may equivalently say that v is live-in at b iff D, strictly dominates all blocks
on a path from b to a use of v. If instead the path would ever leave the D, dominated
subgraph, it could only reenter it through D,, i.e. D, would be contained in the path.

Boissinot’s algorithm now concerns itself with how it can be efficiently determined
whether a strictly D, dominated path from b to a use u exists. Assuming b is strictly
dominated by D, there are essentially two cases to consider: u may be reduced reachable
from b, which means that it is reachable without following back edges. In this case the
whole path is certainly strictly D, dominated. Alternatively u may be reduced reachable
from a back edge target t strictly dominated by D,, which in turn is reachable from b. In
this case it has to be ensured that the path from b to t does not leave the D, dominated
subgraph, which is possible through a careful choice of the back edge targets t that are
considered.

The algorithm uses two precomputed structures: R, is the set of blocks that are reduced
reachable from b, i.e. all u for which exists a path from b to v that does not contain back
edges. The set T}, contains b itself, as well as certain back edge targets reachable from
b: The goal is that T, N sdom(D,) should only contain those back edge targets that are
reachable from b without leaving the D, dominated subgraph.

To achieve this, the auxiliary set TJ is defined as the set of back edge targets t whose
sources are reduced reachable from b, but which are not themselves reduced reachable from
b. The latter condition prevents that TJ contains back edge targets in the D, dominated
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subgraph if b itself is not dominated by D,. T} is now simply the transitive closure over
T, starting at b:

T,:={uT/ulJTu...

teT)

Given the two sets R, and Tj a variable v is live-in at block b iff there exists a ¢t €
T, Nsdom(D,) for which R, Nuses(v) # ), i.e. for which a use of v is reduced reachable
from ¢.

The set R, can be computed by walking the CFG in postorder and computing R, =
{b} U Usesucesv) s at each step. Ty is computed in four steps, starting with empty 7T:

1. Walking the CFG in preorder, set T, = T, U {b} UU,_;+ T; if b is a back edge target.
b

2. For each back edge (s,t) add T; to Ts.
3. Walking the CFG in postorder, set T = Ty U Uscqucesv) Ts-
4. Add b to each Ty.

Boissinot et al. describe the liveness checking algorithm at the block level only. However,
it is easy to extend it to provide liveness information with instruction-level granularity.
Listing 6 shows the algorithm we use to determine if a variable v is live-in at a non-¢
instruction /. In the implementation block(I) refers to the block an instruction occurs in,
while I; > I refers to the order of the instructions, which is assumed to be well-defined
within one basic block. As presented here, the algorithm also makes the special handling
of uses in ¢-nodes explicit.

To support instruction-level liveness checks two main changes are needed: First, we
need to consider the case where the variable v is defined in the same block b as the
instruction I at which the check is performed. If the variable is defined after (or at) I, it
is certainly not live-in. Otherwise we check if there are uses that are either in a different
block or after (or at) I in the same block. For ¢-uses this is always the case.

Second, for the case where [ is in a different block than the definition of v, the ordinary
algorithm is used, while only considering uses that are either in a different block than I
or after (or at) I in the same block. However, if the block of I is a back edge target we
need to consider all uses, as the back edge makes earlier instructions in the same basic
block reachable (the source must be reduced reachable if the target is).

The algorithm for live-out checks is the same with I; > I, comparisons replaced by
I > Is.

For use in PHP two additional adjustments should be made: First, we may ignore
improper uses of variables, as well as uses in ¢-nodes that are only used improperly.
Second, if a m-node defines a variable that is immediately consumed by a ¢-node in the
same block, that variable is never live (or rather, it is only live along the control flow edge
associated with the m-node, which is a distinction we are not interested in).
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Listing 6 Instruction granularity live-in oracle using Boissinot’s algorithm
function ISL1VEIN(variable v, non-¢ instruction I)
b < block([)
1, <+ instruction defining v
if b= D, then
if I; > I then
return false
for all instructions I, using variable v do
if I, is ¢-node then
return true
if block(l,) # bV I, > I then

return true

else
for all t € T, N sdom(D,) do
for all instructions [,, using variable v do
if I, is ¢-node then
for all predecessors p associated with v operands do
if p € R, then
return true
else if block(l,) # bV I, > I Vb is back edge target then
if block(I,) € Ry, then
return true
return false

(a1 — (12) = b1
(b1—>b2): - (bl—)bg):
use as use by

Figure 4.4.: Code before and after ordinary SSA copy propagation. In the new code the
related variables b; and b, interfere.

4.7. Copy propagation on conventional SSA form

The goal of copy propagation is to eliminate copy operations of the form a = b by replacing
all uses of a with uses of b. On unrestricted SSA form performing copy propagation is
very simple, because each variable is defined exactly once, so we do not have to concern
ourselves with the possibility of b changing between the assignment a = b and a use of a.

A simple SSA copy propagation algorithm only needs to visit all assignment instructions
and can remove them after appropriately renaming uses of the left hand side variable.
This process will likely create trivial ¢-nodes of the form vy = ¢(vp, ..., vp). To remove
these in the same pass, we can define copy propagation as an instance of the propagation
framework, with the lattice specifying which variable another variable is a copy of, if any.

However, performing copy propagation in this way significantly changes the properties
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of the SSA graph. Figure 4.4 shows a sample code before and after copy propagation
performed in this manner. For the code before copy propagation, it was possible to
translate out of SSA form simply by dropping the variable indexes (and ¢-nodes in more
complex examples). After copy propagation, this is no longer possible as the use of b;
would then refer to the value of b,.

This difference can be formalized by introducing a concept of related SSA variables,
which is the transitive reflexive closure over variables that occur as source or target in
the same ¢-node, or are used and defined by the same operand of an instruction. For
the example in Figure 4.4 the variables aq, ay as well as by, by are related. For a ¢-node
c3 = ¢(cq, co) the variables ¢y, ¢a, c3 would be related. This partitions the SSA variables
into equivalence classes.

Further, we say that two variables interfere, if one is live-out at the definition point
of the other. If no variables within one equivalence class interfere, the SSA form is said
to be conventional. If additionally the equivalence classes coincide with the original non-
SSA variables, then translation out of SSA form can be performed simply by dropping all
variable indexes and ¢-nodes. Otherwise the SSA form is said to be transformed and the
use of an SSA destruction algorithm is required.

Unlike all other optimizations that have been discussed previously, copy propagation
can cause conventionality to be lost. For the example in Figure 4.4 the related variables
by and by interfere after copy propagation, because b; is live-out at the definition point of
bs.

Originally an implementation of the out-of-SSA translation algorithm by Boissinot et
al. [7] was planned. However, we encountered many issues when trying to implement it,
the most significant of which was that we lose a lot of control over the lifetimes of values
stored in variables. Even if we discount concerns about differences in observable destruc-
tor behavior, extending the lifetime of a PHP value by introducing an additional copy
can have catastrophic effects on performance, because it may trigger subsequent copy-
on-write duplications of large structures (in some unfortunate cases causing asymptotic
slowdowns). While this and other problems can likely be solved, we decided that fur-
ther pursuing out-of-SSA translation is not worthwhile at this point, and we will instead
require SSA form to stay conventional at all times.

To ensure that copy propagation maintains conventionality, some additional considera-
tions are necessary. For an assignment (a; — ag) = by it should first be noted that while
proper uses ap should be replaced with by, improper uses need to be replaced with a;
instead, as improper uses refer to the previous value of the assigned-to variable, which
will be ay after the assignment has been removed.

To guarantee that after copy propagation equivalence classes still coincide with non-
SSA variables, it needs to be ensured that as is not used in ¢-nodes (unless their result
variable is only used improperly) and that there are no in-place modifications of as, such
as (ay — az) += 1 (again excluding improper uses).

Lastly, to ensure interference-freedom within the equivalence class of by, the variable
ay should not be live-out at any modification point of b; (whereby we mean any use of b;
that defines a new b; on the same operand) or live-in at any block that contains a ¢-node
using b;.
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Of course, if a; is a potential reference, copy propagation cannot be used. Additionally
the same concerns as for the dead code elimination of assignments apply: If a; can have a
destructor, removing the assignment may delay its execution. If by can have a destructor,
removing the assignment may trigger the destructor too early. If destruction semantics
should be strictly observed, copy propagation cannot be used in both cases.

4.8. Function inlining

Function inlining refers to the act of replacing a call to a function with an integrated
copy of the function. The motivation for this is twofold: Firstly, procedure calls have
overhead, in PHP even more so than in statically compiled languages. Secondly, inlining
often leads to additional optimization opportunities, e.g. because constant parameters can
be propagated.

While not a primary objective of this work, we have implemented a basic function inlin-
ing pass, particularly to judge to what degree it impacts further optimizations. Inlining is
performed on raw instruction streams, before construction of SSA form. Calls to inlined
functions are replaced by their bodies, with parameter receiving instructions replaced by
assignments and returns replaced by assignments to a temporary and jumps to the end
of the inlined segment.

Additionally an UNSET_VAR instruction is emitted after the inlined function body for
each variable that is used in the inlined function. This is necessary for two reasons:
First, it prevents values (which may be have observable destructors) from living longer
than they would in a non-inlined variant. Second, and more importantly, unsetting all
variables ensures that references are broken. If the variables weren’t unset and the inlined
function called in a loop, a reference from a previous iteration might survive to the next
iteration, which would result in different behavior.

Another caveat applies when inlining methods: As described in section 2.7, for reasons
of backwards compatibility it is possible for $this to be undefined inside instance meth-
ods. Inlining a method call on $this could thus remove the error that would normally oc-
cur on undefined $this access. For this reason we insert an additional ENSURE_HAVE_THIS
instruction, whose sole purpose is throwing an error if $this does not exist.

The hope is that further optimizations will eliminate the various additional instructions
inserted by inlining: Copy and constant propagation are likely to elide the assignments
to the parameter variables. Dead code elimination may remove the additional unsets.
CFG simplification may remove jumps inserted to handle function returns. Dominator
tree propagation (described in section 4.9) can eliminate unnecessary ensure-have-this
instructions.

However, inlining also causes a number of additional issues: From a program semantics
perspective, inlining is problematic because it modifies debug and exception stack traces.
As such it is likely not suitable as a default optimization without further work in this
direction. Additionally, there are two potential performance problems: The first is that
inlining increases the program size and consequently also increases the number of CPU
cache misses. The second issue is that during inlining the variable spaces of multiple
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functions are merged. This is not a concern for VM temporaries, as PHP is able to
compact the number of temporaries to insignificant sizes. However, we currently do not
have a register allocator for real variables. As VM slots for real variables need to be fully
initialized on entry into the function and destroyed on exit from it, this incurs a significant
overhead if the number of variables is increased (and does so even if the inlined code-path
is never executed).

Lastly, there is only a limited number of functions that are eligible for inlining. While
some functions cannot be inlined due to use of dynamic features, the more significant
issue is posed by the single-file view of the current PHP compiler. As such, only functions
in the same file may be inlined, severely limiting the applicability. For object oriented
code, an additional complication is that we can typically only be certain about the called
method if it is private or final. As we did not implement speculative devirtualization, this
further limits the number of inlinable procedures.

As inlining was not a primary goal of this work, we did not investigate different inlining
heuristics in detail. For the results in section 5.2 we tried both a conservative heuristic,
which only inlines small functions with many constant arguments, as well as an aggressive
heuristic, which inlines all eligible functions (that are not excessively large) to one level.

4.9. Propagating information along the dominator tree

In some cases it is possible to propagate useful information, and optimize based on it,
using only the dominator tree, without requiring or benefiting from SSA form.

If n dominates m, then n is always executed before m. As such, if n enforces a certain
condition (by throwing if it is not met), we know that this condition holds in m as well.
The dominator tree can be used to efficiently propagate this information:

We traverse the dominator tree starting from the root. If, while walking the instructions
of a block, a condition is enforced, we push this information onto a stack and can make
use of it while it is on the stack. Before recursively processing child nodes, we remember
the current position on the stack. After a child node has been processed, we discard all
information after this position.

Currently, we use this method for two purposes: The first is to reduce the number
of function arguments for which we have to assume that by-reference passing is used,
because we do not know the function signature (defined in a different file). This is done
by exploiting the fact that passing literals and some expression types to a by-reference
argument generates an exception. If we see that an argument of an unknown function is
used in this way, we can conclude for all dominated code that this argument uses by-value
passing. The second is to remove redundant ENSURE_HAVE THIS instructions, if it has
already been ensured that $this exists.

It should be noted that dominator tree propagation is only a cheap and easy to im-
plement approximation. For example, it is not able to handle diamond control flow, i.e.
detect that if a condition is enforced in both branches of an if/else structure the condition
will also hold when control flow rejoins. To accurately handle this, one would have to
rephrase the problem in terms of data-flow equations.
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4. Analysis and Optimization

4.10. Testing and verification

In the course of this chapter a number of different optimizations has been introduced. It
is well known that writing optimizing compilers that are also correct is a non-trivial task,
so we wish to briefly describe which steps we have taken to gain at least some degree of
confidence in our implementation.

The PHP testsuite includes approximately fifteen thousand end-to-end execution tests,
an estimated three thousand of which are testing core language functionality. A problem
we ran into early on, is that the majority of these tests run in the pseudo-main scope and
as such are effectively excluded from optimization. This means that even blatantly wrong
optimizations sometimes passed the testsuite.

To counter this problem, we have built an automated test porting tool based on our
PHP-Parser project, which moves non-declaration code into a dummy function and calls it.
Because this has to exclude tests that use global variables or have line number dependent
output etc. we can only port approximately half of the core language tests in this manner.
While this is not very extensive, it does, in combination with tests on real PHP projects,
provide a baseline.

In addition to this, we verify that all invariants of the used SSA implementation are
maintained between passes, and after optimization has finished, also verify that all SSA
variables associated with one non-SSA variable are interference-free (ensuring our require-
ment of conventionality). While this makes no direct statement about the correctness of
the transformed IR, it does avoid certain categories of bugs.

Lastly, in order to verify the results of type inference, we have implemented a mode
in which a type assertion instruction is emitted after any program point defining a new
SSA variable. The testsuite is then run with the bytecode instrumented in this manner
to detect discrepancies between type inference results and actual types. We have found
this approach to be extremely valuable in finding edge-case bugs in the inference transfer
function, as well as the table of internal function return types.
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5. Results

In this chapter, the performance impact of the optimizations discussed in the previous
chapter will be measured and analyzed. We will first consider the effect on various mi-
crobenchmarks shipped with the PHP distribution and break down the impact of in-
dividual optimizations. Subsequently, we consider the effect on real applications, using
WordPress and MediaWiki as examples, and discuss why some optimizations are effective,
while others are not.

All measurements were performed on an Intel Core i5-4690 CPU in a virtualized Ubuntu
14.04 environment. The numbers presented are averages over many executions.

5.1. Microbenchmarks

The PHP implementation ships with two sets of standard microbenchmarks. The first
(bench.php) implements a number of functions that either perform simple algorithms (e.g.
computations of Mandelbrot sets or Ackermann numbers) or certain code pattern (e.g.
writing to and reading from arrays in specific orders).

Figure 5.1 shows the normalized execution times of these microbenchmarks for three
scenarios: The baseline refers to use of the previously existing optimization pipeline. The
other two results both use our additional data-flow optimizations and selectively enable
inlining. The geometric mean speedup is 1.20x without inlining and 1.42x with inlining.

There are a few things we can conclude from these results: First, there are a number
of benchmarks which aren’t affected by our optimizations at all, including the majority
of the array population benchmarks. This is not particularly surprising as we do not
perform array related optimizations.

Second, most benchmarks are not affected by inlining, as they only use a single function
or few calls. Large effects can be seen for simpleu(d)call, where inlining enhances dead
code elimination. The Fibonacci number benchmark also benefits from inlining one level
of recursive calls.! On the other hand, the computation of Ackermann numbers suffers a
minor regression if recursive calls are inlined. This is a symptom of the issue discussed
in section 4.8, namely an increase in the number of variables for code-paths that are not
executed.

For the benchmarks where our optimizations were effective, Figure 5.2 shows a more
detailed breakdown of which optimizations contributed to the reduction in execution

nterestingly, there is a 2% regression when running the Fibonacci benchmark with data-flow optimiza-
tion, but without inlining. As our optimizations do not perform any transformations in this case, and
this regression is not reproducible in isolation, we assume that this is a side-effect of different memory
layout caused by optimizations in other functions.
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Figure 5.1.: Normalized execution times for standard PHP microbenchmarks for base-
line (blue), data-flow optimizations without inlining (red) and with inlining
(cyan). Lower is better. The last column is the geometric mean.

time, starting from a baseline with inlining enabled, but data-flow optimizations disabled.
For the tested benchmarks only dead code elimination, copy propagation, assignment
contraction and type specialization had a non-trivial impact.

The contributions of the individual optimizations do not always sum to one. For
the mandel and sieve benchmarks the reason is that assignment contraction changes
ASSIGN_ADD $a, $b operations into $a = ADD $a, $b, which then allows type special-
ization to act on them. For the simpleu(d)call benchmarks this is not the case. Here, the
elimination of dead code does not affect the number of specialized instructions. Rather,
it appears that the use of specialized instructions has a larger overall impact if there are
fewer non-specialized instructions interspersed.

Similarly, there are a number of cases where the individual optimizations sum to more
than one. The reason for this is that many optimizations have some degree of overlap, e.g.
copy propagation and assignment contraction may lead to the same effective result in some
cases. The most extreme example is the matrix benchmark, where all four optimizations
contribute individually, but assignment contraction subsumes everything else.

The second set of microbenchmarks shipping with PHP (micro_bench.php) are different
in nature: They benchmark the repeated execution of a single operation, or a combination
of few operations. As such, these benchmarks are of very little value to us, as they
essentially only test whether we can DCE a particular operation. We are able to DCE the
loop body in 9 out of 34 cases. In the remaining cases we fail to show that the operation
can never generate a run-time warning.
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Figure 5.2.: Effect of individual optimizations on microbenchmarks. The black line repre-
sents the performance improvement if all optimizations are enabled, while the
stacked bar charts show the impact of individual optimizations. The individ-
ual parts do not necessarily sum to one, if one optimization improves another
or if there is overlap between different optimizations. Inlining is enabled in
all cases.

5.2. Real applications

Of course, the ultimate goal of this work was to improve performance of real-world appli-
cations, rather than of microbenchmarks.

We have tested two applications to estimate real-world impact: The first is Word-
Press, which is a popular blogging platform and without doubt the most widely deployed
application written in PHP. The second is MediaWiki, which is the software powering
Wikipedia.

For both applications we have measured response times in sequential execution.? For
WordPress the homepage was tested, while for MediaWiki the Wikipedia page of Barack
Obama was used (which is also used by the Wikimedia Foundation for benchmarking).

For WordPress we observe an improvement of 1% in execution time, and for MediaWiki
a slightly larger improvement of 2%. In both cases additionally enabling inlining leads
to a minor positive change (<0.5%) if only few small functions with mostly constant
arguments are inlined. If inlining is used aggressively there is a significant negative impact
on performance. E.g. for MediaWiki execution time increases by 5% if all eligible calls
are inlined to one level.

Due to the small differences in execution time, it is hard to quantify the run-time
impact of individual optimizations. However, based on statically collected statistics, it is

2The noise when measuring throughput under high concurrency in a virtualized environment (using
Facebook’s oss-performance tool) was too high to resolve small timing differences.
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5. Results

likely that assignment contraction is the primary contributor. For WordPress 3.7% of all
instructions are affected by assignment contraction, while for MediaWiki it is 4.3%.

The effect of all other optimizations is at least an order of magnitude smaller: The
combination of SCCP and DCE removes 0.5% of instructions in WordPress and 0.2% in
MediaWiki. Similarly, copy propagation removes 0.2% in both cases.

However, in this case the more interesting question is not which optimizations apply,
but rather why so few of them do. While a 1-2% improvement in response times of realistic
applications is in line with our initial expectations, we did harbor a hope of seeing better
results.

One way to gain insight into this question is by considering the amount of type in-
formation that is available for these applications: In both cases nearly half of all SSA
variables have type any, of which 70% are additionally marked as potential references. As
reference variables can never be optimized and there is little that can be done with type
any variables, this means that half of all variables are effectively excluded from optimiza-
tion. A key contribution to the number of potential reference variables is the fact that
the current compiler has to assume that all functions defined outside the current file use
by-reference argument passing. If this limitation could be removed (which is likely in the
longer term) more type information would become available.

Additionally, typical PHP applications do not tend to contain the kind of computation-
ally heavy, tightly looped code that can be effectively optimized using type specialization.
Rather, PHP applications commonly operate on strings and arrays, where specialization is
less effective as the involved operations are intrinsically more expensive, so that overhead
of type-checking plays a lesser role.

It is not very surprising that optimizations like SCCP and DCE are not very effective
on non-inlined code, as programmers do not tend to intentionally write large amounts of
dead code. If we use a relatively aggressive inlining heuristic, which inlines all eligible
calls to one level, the amount of instructions removed by a combination of SCCP and
DCE increases to 6% (from previously 0.5%). This suggests that if we can counter the
other disadvantages of inlining discussed in section 4.8, there is a significant potential
for optimization from this avenue. As an alternative to inlining one could also consider
creating clones of functions for certain constant arguments. This still allows SCCP and
DCE to be effective, but does not cause issues with increased variable space and also
preserves stack traces.
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6. Conclusion and Outlook

The goal of this thesis was to establish whether it is possible to improve the performance of
PHP, by improving the quality of the generated bytecode through the use of classic data-
flow optimization techniques. The primary challenge in doing so, is that these techniques
have been developed in the context of statically typed and compiled languages, while PHP
is dynamically and weakly typed and additionally features a plethora of other dynamic
language features.

We operate on static single assignment form and use type inference to determine the
possible types of variables. Based on this, we perform a number of different optimiza-
tions, including constant propagation, dead code elimination and copy propagation, as
well as more PHP-specific transformations such as type specialization and assignment
contraction.

We have found that significant performance gains are possible for numerically inten-
sive and tightly looped code, as is typically found in benchmark scripts. We achieve a
mean speedup of 1.42x on PHP’s own benchmark suit. However, when considering real
applications we have found the speedup to be limited to 1-2%. For real applications, the
most effective optimization is assignment contraction, which is a specific form of type
specialization. There are a number of reasons why we do not see better results, which
also suggest potential avenues for further research:

First, we currently suffer from a limitation of the PHP opcode caching layer, which
requires each file to be compiled independently. As this prevents us from knowing the
signatures of functions defined in different files, we have to pessimistically assume use of
by-reference argument passing. As potential reference variables are excluded from opti-
mization, this significantly reduces the scope of applicability. If this limitation can be
removed in the future, our approach should show better results without further modifica-
tions.

Second, our implementation of type inference currently operates on individual proce-
dures only. This is problematic because at present many popular projects do not yet
specify type information in function signatures (or only type information that is hard to
optimize on). As such, there is only relatively little known type information which can
be used for inference. This situation could be improved by using inter-procedural type
inference. However, the degree to which inter-procedural inference is possible is again
limited by the previous point.

Third, optimizations such as constant propagation and dead code elimination only work
effectively if inlining is used. However, inlining comes at the cost of increased program
size and a larger variable space. One way to ameliorate the latter problem would be to
implement a register allocator for compiled variables. Another interesting approach would
be to forgo inlining and instead clone functions for specific constant arguments or types.
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6. Conclusion and Outlook

This would allow constant propagation and dead code elimination to become effective,
while avoiding some of the inlining overhead and additionally preserving stack traces.
However, it is unclear whether the additional optimizations would still be overshadowed
by the program size increase.

Fourth, while we have implemented a number of different optimization passes, many
more compiler optimizations are known. For example, we did not include any mechanism
for redundancy elimination, such as global value numbering or partial redundancy elim-
ination. Similarly, we did not attempt to implement any loop optimizations, which are
known to be particularly effective.

Finally, this thesis has been focused on purely static optimizations. However, this
disregards an important opportunity that is available in interpreted languages, namely
the possibility of collecting type information at runtime. This would allow the insertion
of guards for likely input types and optimization based on them (although a version of
the function without type restrictions would have to be retained).

To conclude, the data-flow optimization framework in its current state only provides
a relatively small performance improvement for real-world applications. However, it lays
an important foundation for further optimization work in PHP, some possible directions
for which have been outlined above. Additionally, we believe that this approach to opti-
mization will only become more applicable in the future, as both the PHP language and
community increasingly embrace the use of type annotations. Finally, it is likely that
the implemented optimizations will also prove useful when the PHP project revisits the
possibility of using a just-in-time compiler.
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A. Source Code

The source code for this thesis is available at https://github.com/nikic/php-src/tree/
opt, though some parts are already contributed upstream. As this branch is still under
development, https://github.com /nikic/php-src/tree/opt_orig has been retained as the
state at the time of this writing.

All-in-all the implementation amounts to approximately ten thousand lines of code,
though a significant part is made up of experiments not described in this thesis. The
following is a very brief overview of structure and options. Familiarity with the PHP
implementation is assumed here, this is not an end-user description.

The optimization component of opcache is located in the ext/opcache/Optimizer direc-
tory. The bulk of our work is located in the ssa/ subdirectory. Additionally ssa_ pass.c
includes overall management, statistics.c collects statistics and inlining.c performs inlin-
ing.

SSA optimizations are registered as pass 6, while inlining is pass 8. As shortcuts, the
optimization level Oxf1f disables data-flow optimization, 0xf3f enables it and 0xf9f
additionally enabled inlining (opcache.optimization_level).

Individual data-flow optimization passes can be enabled/disabled using opcache.ssa__
opt_level. Debug dumps are available through opcache.ssa_debug level and can be
restricted to one function using opcache.ssa_debug func.

opcache.opt_ statistics=1 will dump statistics collected during optimization.

opcache.opt__statistics=2 will dump a trace of all instructions that were compiled, along
with inferred type information. We provide an analyze.php program in the root directory,
which can be used to filter this trace for specific types and instructions and present
aggregated results.

opcache.opt__statistics=3 will instrument the bytecode with type checking instructions.
The purpose of this mode is to verify type inference results.

Our test porting utility is portTests.php in the root directory, however the ported tests
are already committed in this branch.
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Acronyms

AST Abstract Syntax Tree
CFG Control Flow Graph

DCE Dead Code Elimination
DF Dominance Frontier

DFS Depth First Search

HHVM HipHop Virtual Machine
IR Intermediate Representation
JIT Just-In-Time compiler

RPO Reverse Post-Order

SCCP Sparse Conditional Constant Propagation
SHM SHared Memory

SSA Static Single Assignment form

VM Virtual Machine
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