Rust @ LLVM

Nikita Popov

LLVM Developers Meeting 2024

Rust: Memory safe systems programming language

2 & RedHat

Rust: Memory safe systems programming language

safe

3 & RedHat

Rust: Memory safe systems programming language

safe fast

4 ‘ Red Hat

/0% of security bugs
are memory safety issues

https://www.chromium.org/Home/chromium-security/memory-safety/
https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/

5

& RedHat

Rust: Memory safe systems programming language

safe fast

rustc LLVM

6 & RedHat

Governance

Upstream LLVM

T = Team, WG = Working Group

)
T-compiler " WG-LLVM
Y
T-lang > T-opsem

& RedHat

Governance

Upstream LLVM

A

T-compiler

>

T-lang

T = Team, WG = Working Group

T-opsem

<«— [ead maintainer

<«— Team lead

& RedHat

Governance

T-compiler

Upstream LLVM

A

T-lang

P

T = Team, WG = Working Group

T-opsem

<«— [ead maintainer

<«— Team lead

| work here

|

& RedHat

Supported LLVM versions

e Current LLVM main (20-dev)
e Current LLVM release (19)

o Default, used by official rustup binaries

e One ortwo older LLVM releases (18, 17)

o For distros

10

& RedHat

Supported LLVM versions

e Current LLVM main (20-dev)
e Current LLVM release (19)

o Default, used by official rustup binaries

e One ortwo older LLVM releases (18, 17)

o For distros

e LLVM fork for backport management only, no Rust-specific patches

1

& RedHat

Rust Lowering

Rust

12

MIR

LLVM backend

& RedHat

Rust Lowering

Rust

Cranelift backend

13

MIR

Fast unoptimized builds

LLVM backend

Default, production use

& RedHat

Rust Lowering

Rust

Cranelift backend

14

MIR

Fast unoptimized builds

LLVM backend

Default, production use

GCC backend

Exotic targets

& RedHat

Rust Lowering

Rust

Cranelift backend

MIR

15

Fast unoptimized builds

]

MIR
optimizations

LLVM backend

Default, production use

GCC backend

Exotic targets

& RedHat

16

Challenges

& RedHat

Challenges

17

Correctness
Performance

Compilation Time

& RedHat

Challenges

More important

Less important

18

A

Correctness
Performance

Compilation Time

& RedHat

Challenges

19

More important

Less important

A

Correctness
Performance

Compilation Time

Y

Less pressing

More pressing

& RedHat

20

Compilation Time

& RedHat

Compilation Time

e Compilation unit is crate (vs file in C/C++)
o Mitigation: CGU partitioning + Crate-local ThinLTO

21

& RedHat

Compilation Time

(@)

Compilation unit is crate (vs file in C/C++)

Mitigation: CGU partitioning + Crate-local ThinLTO

Core 1

Core 2

Core 3

Core 4

Core 5

Core 6

Core 7

22

& RedHat

CGU partitioning and Crate-Local ThinLTO

Cross-Module

Pre-Link Analysis Post-Link Optimization +
Optimization Code generation

Core 1 CGU 1

Core 2 CGU 2

Core 3

Core 4

Core 5

Core 6

Core 7

23

& RedHat

Compilation Time

e Compilation unit is crate (vs file in C/C++)
o Mitigation: CGU partitioning + Crate-local ThinLTO

e Generics produce huge amounts of IR
o Mitigation: MIR optimization, share-generics, polymorphization(?)

24

& RedHat

Monomorphization

foo<T>

foo<i8>

25

Monomorphization

foo<i32>

foo<u32>

& RedHat

Monomorphization

foo<T>

foo<i8>

26

Monomorphization

4

LLVM optimizations

foo<i32>

.

LLVM optimizations

foo<u32>

¢

LLVM optimizations

& RedHat

Monomorphization

foo<T>

foo<i8>

]

MIR
optimizations

27

Monomorphization

4

LLVM optimizations

foo<i32>

.

LLVM optimizations

foo<u32>

¢

LLVM optimizations

& RedHat

Compilation Time

e Compilation unit is crate (vs file in C/C++)
o Mitigation: CGU partitioning + Crate-local ThinLTO

e Generics produce huge amounts of IR
o Mitigation: MIR optimization, share-generics, polymorphization(?)

e LLVMis slow
o Mitigation: Make LLVM faster

28

& RedHat

LLVM 10 upgrade

vy v v v v v

vy v v

v

clap-rs
clap-rs
syn
clap-xs
cargo
syn
regex
cargo
regex
regex
regex
regex
regex

tokio-webpush-simple

opt
opt
opt
opt
opt
opt
opt
opt
opt
opt
opt
opt
opt
opt

full
incr-patched: println
incr-patched: println
incr-full
incr-patched: println
incr-full
full
incr-full
incr-patched: sparse set
incr-patched: Job
incr-patched: compile one
incr-patched: Compiler new
incr-patched: reverse

incr-patched: minor change

11lvm
11lvm
1lvm
11lvm
1lvm
1lvm
1lvm
1lvm
11lvm
1lvm
11vm
11vm
1lvm
1lvm

16.
16.
15..
14.
13.
13
1Z.
12.
1 .5
12
12
12.
12.
37

26%
03%
35%
36%
88%
82%
71%
63%
57%
53%
53%
51%
49%
31%

https://perf.rust-lang.org/compare.html?start=c5840f9d252¢c2f5cc16698dbf385a29c5de3ca07&end=97588aeda139309169b11654fc809e1ac5fd246¢

29

& RedHat

LLVM compilation time tracker

geomean:

-15 -\
-20 stagel-03
stagel-ReleaseThinLTO0

stagel-ReleaselT0-g
stagel-00-g

-25

-30

Jul 2021 Jan 2022 Jul 2022 Jan 2023 Jul 2023 Jan 2024 Jul 2024

https://llvm-compile-time-tracker.com/graphs.php?startDate=2021-02-04&interval=100&relative=on&bench=geomean&width=800

30 & RedHat

LLVM 19 upgrade

regex-1.5.5
regex-1.5.5
regex-1.5.5
regex-1.5.5
cargo-0.60.0
webrender-2022
regex-1.5.5
webrender-2022
image-0.24.1
regex-1.5.5
ripgrep-13.0.0
cargo-0.60.0
webrender-2022
image-0.24.1

debug
debug
opt
debug
debug
opt
opt
opt
debug
opt
debug
debug
debug
debug

incr-patched: Job
full
full
incr-full
full
full
incr-patched: Job
incr-full
full
incr-full
full
incr-full
full

incr-full

1lvm
1lvm
11lvm
11lvm
11lvm
11lvm
11lvm
11lvm
11lvm
1lvm
1lvm
1lvm
1lvm
11lvm

-15.
-15.
-13.
-13.

-13

-13.
-12.
-12.
-12.
-12.
-12.
-12.

-11
-11

78%
12%
80%
77%

.53%

51%
99%
73%
53%
39%
15%
5%

.82%
.32%

https://perf.rust-lang.org/compare.html?start=e552¢168c72c95dc28950a9aae8ed7030199aa0d&end=0b5eb7ba7bd796fb39c8bb6acd9ef6c140f28b65

31

& RedHat

32

Performance

& RedHat

Specific optimization problems

e Bounds check elimination

o Usually works, but not reliable
o Good: Constant bounds, straight-line code. Bad: Checks in loops.

33

& RedHat

Specific optimization problems

e Bounds check elimination

o Usually works, but not reliable
o Good: Constant bounds, straight-line code. Bad: Checks in loops.

e memcpy elimination
o Rust has no NRVO -> many memcpys

34

& RedHat

Specific optimization problems

e Bounds check elimination
o Usually works, but not reliable

o Good: Constant bounds, straight-line code. Bad: Checks in loops.

e memcpy elimination
o Rust has no NRVO -> many memcpys

e Inclusive ranges

o 0..n often optimized much better than 0. .=n
o Conditional increment to handle n == u32: :MAX correctly

35

& RedHat

Performance: Telling LLVM about Rust semantics

e Rust has many very strong guarantees

e Conveyed to LLVM using attributes, metadata and assumes
o noalias, readonly, dereferenceable, nonnull, range, etc.

36 & RedHat

Performance: Telling LLVM about Rust semantics

e Rust has many very strong guarantees

e Conveyed to LLVM using attributes, metadata and assumes
o noalias, readonly, dereferenceable, nonnull, range, etc.

e Problem: Metadata/attributes get lost. Assumes don't get lost enough.

37 ‘ Red Hat

Attributes motivated by Rust needs

e Allocator attributes
o Teach LLVM about Rust's custom allocation functions
e Range attributes

o Previously only available as load metadata. Can now annotate function args.
e Dead on_unwind, writable

o Allow more memcpy optimization
e Getelementptr nuw

o Let LLVM know the array index is not negative

38

& RedHat

Attributes motivated by Rust needs

e Allocator attributes

o Teach LLVM about Rust's custom allocation functions
e Range attributes

o Previously only available as load metadata. Can now annotate function args.
e Dead on_unwind, writable

o Allow more memcpy optimization

e Getelementptr nuw
o Let LLVM know the array index is not negative

e All of these benefit C++ and other languages as well

39

& RedHat

40

Correctness

& RedHat

Rust semantics based on LLVM semantics

Rust

/e

41

& RedHat

Rust semantics based on LLVM semantics

e Rust can only pick semantics that are supported by LLVM

o ...and have good optimization support

Rust

/e

42

& RedHat

Rust semantics based on LLVM semantics

e Rust can only pick semantics that are supported by LLVM

o ...and have good optimization support
Rust Unspecified
us semantics
Undecided
semantics

\2/
LLVM \

43 ‘ RedHat

Rust semantics based on LLVM semantics

e Rust can only pick semantics that are supported by LLVM

o ...and have good optimization support
Rust Unspecified
us semantics
Undecided
semantics

w Known
LLVM >>< miscompiles

44 & RedHat

Rust semantics based on LLVM semantics

e Rust can only pick semantics that are supported by LLVM

o ...and have good optimization support
Rust Unspecified
us semantics
Undecided
semantics
Known
LLVM miscompiles

45

& RedHat

Historical issues

e Side-effect-free infinite loop UB
o Opt-in via mustprogress

46

& RedHat

Historical issues

e Side-effect-free infinite loop UB
o Opt-in via mustprogress
e noalias (restrict C)
o restrict rarely used in C, ubiquitous in Rust

47

& RedHat

Call ABI

e How values are passed/returned

48

& RedHat

Call ABI

e How values are passed/returned

e C ABI handling must be implemented in each frontend

o LLVM type system not enough for ABI handling
o Must reimplement ~10k lines of clang Targetinfo

49

& RedHat

Call ABI

e How values are passed/returned

e C ABI handling must be implemented in each frontend

o LLVM type system not enough for ABI handling
o Must reimplement ~10k lines of clang Targetinfo

e LLVM confuses "available instruction sets" and "call ABI"
o Target features like +avx affect both

50

& RedHat

Off the beaten path

e Rustis currently adding f16 and 128 types
e Beyond X86/ARM: Lots of bugs
e Backend often "wrong by default" instead of "correct by default”

51

& RedHat

Rust @ LLVM

Thank You!

Questions?

54

& RedHat

